20,644 research outputs found

    Conformational studies of various hemoglobins by natural-abundance 13C NMR spectroscopy

    Get PDF
    Studies of variously liganded hemoglobins (both from human and rabbit) by natural-abundance 13C NMR spectroscopy have revealed apparent conformational differences that have been interpreted on the basis of two quaternary structures for the α2ß2 tetramer, and variable tertiary structures for the individual α and ß subunits. In solution, rabbit hemoglobins appear to have somewhat more flexibility than human hemoglobins

    Consumer Willingness-to-Pay for Fresh Pork Attributes

    Get PDF
    A survey was used to gauge consumer preferences toward four fresh pork attributes: juiciness, tenderness, marbling, and leanness. The survey elicited consumer willingness-to-pay a premium for an improvement in these attributes. Approximately one-half of the respondents were willing to pay some premium for the attributes of juiciness, leanness, and tenderness. The average premium size ranged from 0.20/lb.formarblingto0.20/lb. for marbling to 0.37/lb. for tenderness. Neither the choice of a certifying agency nor the use of a cheap talk script influenced premium levels.pork attributes, pork markets, willingness to pay, Agribusiness, Marketing,

    Bag Formation in Quantum Hall Ferromagnets

    Full text link
    Charged skyrmions or spin-textures in the quantum Hall ferromagnet at filling factor nu=1 are reinvestigated using the Hartree-Fock method in the lowest Landau level approximation. It is shown that the single Slater determinant with the minimum energy in the unit charge sector is always of the hedgehog form. It is observed that the magnetization vector's length deviates locally from unity, i.e. a bag is formed which accommodates the excess charge. In terms of a gradient expansion for extended spin-textures a novel O(3) type of effective action is presented, which takes bag formation into account.Comment: 13 pages, 3 figure

    Thermodynamic Phase Diagram of the Quantum Hall Skyrmion System

    Full text link
    We numerically study the interacting quantum Hall skyrmion system based on the Chern-Simons action. By noticing that the action is invariant under global spin rotations in the spin space with respect to the magnetic field direction, we obtain the low-energy effective action for a many skyrmion system. Performing extensive molecular dynamics simulations, we establish the thermodynamic phase diagram for a many skyrmion system.Comment: 4 pages, RevTex, 2 postscript figure

    Low-velocity anisotropic Dirac fermions on the side surface of topological insulators

    Full text link
    We report anisotropic Dirac-cone surface bands on a side-surface geometry of the topological insulator Bi2_2Se3_3 revealed by first-principles density-functional calculations. We find that the electron velocity in the side-surface Dirac cone is anisotropically reduced from that in the (111)-surface Dirac cone, and the velocity is not in parallel with the wave vector {\bf k} except for {\bf k} in high-symmetry directions. The size of the electron spin depends on the direction of {\bf k} due to anisotropic variation of the noncollinearity of the electron state. Low-energy effective Hamiltonian is proposed for side-surface Dirac fermions, and its implications are presented including refractive transport phenomena occurring at the edges of tological insulators where different surfaces meet.Comment: 4 pages, 2 columns, 4 figure

    Adjacency labeling schemes and induced-universal graphs

    Full text link
    We describe a way of assigning labels to the vertices of any undirected graph on up to nn vertices, each composed of n/2+O(1)n/2+O(1) bits, such that given the labels of two vertices, and no other information regarding the graph, it is possible to decide whether or not the vertices are adjacent in the graph. This is optimal, up to an additive constant, and constitutes the first improvement in almost 50 years of an n/2+O(logn)n/2+O(\log n) bound of Moon. As a consequence, we obtain an induced-universal graph for nn-vertex graphs containing only O(2n/2)O(2^{n/2}) vertices, which is optimal up to a multiplicative constant, solving an open problem of Vizing from 1968. We obtain similar tight results for directed graphs, tournaments and bipartite graphs

    Skyrme Crystal In A Two-Dimensional Electron Gas

    Full text link
    The ground state of a two-dimensional electron gas at Landau level filling factors near ν=1\nu =1 is a Skyrme crystal with long range order in the positions and orientations of the topologically and electrically charged elementary excitations of the ν=1\nu=1 ferromagnetic ground state. The lowest energy Skyrme crystal is a square lattice with opposing postures for topological excitations on opposite sublattices. The filling factor dependence of the electron spin-polarization, calculated for the square lattice Skyrme crystal, is in excellent agreement with recent experiments.Comment: 3 pages, latex, 3 figures available upon request from [email protected]

    Splitting The Gluon?

    Full text link
    In the strongly correlated environment of high-temperature cuprate superconductors, the spin and charge degrees of freedom of an electron seem to separate from each other. A similar phenomenon may be present in the strong coupling phase of Yang-Mills theories, where a separation between the color charge and the spin of a gluon could play a role in a mass gap formation. Here we study the phase structure of a decomposed SU(2) Yang-Mills theory in a mean field approximation, by inspecting quantum fluctuations in the condensate which is formed by the color charge component of the gluon field. Our results suggest that the decomposed theory has an involved phase structure. In particular, there appears to be a phase which is quite reminiscent of the superconducting phase in cuprates. We also find evidence that this phase is separated from the asymptotically free theory by an intermediate pseudogap phase.Comment: Improved discussion of magnetic nature of phases; removed unsubstantiated speculation about color confinemen

    Solution of the Fokker-Planck equation with a logarithmic potential and mixed eigenvalue spectrum

    Full text link
    Motivated by a problem in climate dynamics, we investigate the solution of a Bessel-like process with negative constant drift, described by a Fokker-Planck equation with a potential V(x) = - [b \ln(x) + a\, x], for b>0 and a<0. The problem belongs to a family of Fokker-Planck equations with logarithmic potentials closely related to the Bessel process, that has been extensively studied for its applications in physics, biology and finance. The Bessel-like process we consider can be solved by seeking solutions through an expansion into a complete set of eigenfunctions. The associated imaginary-time Schroedinger equation exhibits a mix of discrete and continuous eigenvalue spectra, corresponding to the quantum Coulomb potential describing the bound states of the hydrogen atom. We present a technique to evaluate the normalization factor of the continuous spectrum of eigenfunctions that relies solely upon their asymptotic behavior. We demonstrate the technique by solving the Brownian motion problem and the Bessel process both with a negative constant drift. We conclude with a comparison with other analytical methods and with numerical solutions.Comment: 21 pages, 8 figure
    corecore