3,454 research outputs found

    Reducing The Risk Of Floods In Urban Areas With Combined Inland-River System

    Full text link
    With the change of the water environment in accordance with climate change, the loss of lives and properties has increased due to urban flood. Although the importance of urban floods has been highlighted quickly, the construction of advancement technology of an urban drainage system combined with inland-river water and its relevant research has not been emphasized in Korea. In addition, without operation in consideration of combined inland-river water, it is difficult to prevent urban flooding effectively. This study, therefore, develops the uncertainty quantification technology of the risk-based water level and the assessment technology of a flood-risk region through a flooding analysis of the combination of inland-river. The study is also conducted to develop forecast technology of change in the water level of an urban region through the construction of very short-term/short-term flood forecast systems. This study is expected to be able to build an urban flood forecast system which makes it possible to support decision making for systematic disaster prevention which can cope actively with climate change

    Frequency-Based Decentralized Conservation Voltage Reduction Incorporated Into Voltage-Current Droop Control for an Inverter-Based Islanded Microgrid

    Get PDF
    Conservation voltage reduction (CVR) aims to decrease load demands by regulating bus voltages at a low level. This paper proposes a new strategy for decentralized CVR (DCVR), incorporated into the current-based droop control of inverter-interfaced distributed energy resources (IDERs), to improve the operational reliability of an islanded microgrid. An IdqI_{dq} controller is developed as an outer feedback controller for each IDER, consisting of IdI_{d} VV controllers for the DCVR and IdI_{d} ω\omega and IqI_{q} VV controllers for power sharing. In particular, the IdI_{d} VV controllers adjust the output voltages of the IDERs in proportion to the frequency variation determined by the IdI_{d} ω\omega controllers. This enables the output voltages to be reduced by the same amount, without communication between the IDERs. The IqI_{q} VV controllers are responsible for reactive power sharing by adjusting the voltages while taking into account the IdI_{d} VV controllers. Small-signal analysis is used to verify the performance of the proposed DCVR with variation in the IdI_{d} ω\omega and IqI_{q} VV droop gains. Case studies are also carried out to demonstrate that the DCVR effectively mitigates an increase in the load demand, improving the operational reliability, under various load conditions determined by power factors and load compositions.11Ysciescopu

    Implicit Kernel Attention

    Full text link
    \textit{Attention} computes the dependency between representations, and it encourages the model to focus on the important selective features. Attention-based models, such as Transformers and graph attention networks (GAT) are widely utilized for sequential data and graph-structured data. This paper suggests a new interpretation and generalized structure of the attention in Transformer and GAT. For the attention in Transformer and GAT, we derive that the attention is a product of two parts: 1) the RBF kernel to measure the similarity of two instances and 2) the exponential of L2L^{2} norm to compute the importance of individual instances. From this decomposition, we generalize the attention in three ways. First, we propose implicit kernel attention with an implicit kernel function, instead of manual kernel selection. Second, we generalize L2L^{2} norm as the LpL^{p} norm. Third, we extend our attention to structured multi-head attention. Our generalized attention shows better performance on classification, translation, and regression tasks

    Generalized Gumbel-Softmax Gradient Estimator for Various Discrete Random Variables

    Full text link
    Estimating the gradients of stochastic nodes is one of the crucial research questions in the deep generative modeling community, which enables the gradient descent optimization on neural network parameters. This estimation problem becomes further complex when we regard the stochastic nodes to be discrete because pathwise derivative techniques cannot be applied. Hence, the stochastic gradient estimation of discrete distributions requires either a score function method or continuous relaxation of the discrete random variables. This paper proposes a general version of the Gumbel-Softmax estimator with continuous relaxation, and this estimator is able to relax the discreteness of probability distributions including more diverse types, other than categorical and Bernoulli. In detail, we utilize the truncation of discrete random variables and the Gumbel-Softmax trick with a linear transformation for the relaxed reparameterization. The proposed approach enables the relaxed discrete random variable to be reparameterized and to backpropagated through a large scale stochastic computational graph. Our experiments consist of (1) synthetic data analyses, which show the efficacy of our methods; and (2) applications on VAE and topic model, which demonstrate the value of the proposed estimation in practices

    Refining Generative Process with Discriminator Guidance in Score-based Diffusion Models

    Full text link
    The proposed method, Discriminator Guidance, aims to improve sample generation of pre-trained diffusion models. The approach introduces a discriminator that gives explicit supervision to a denoising sample path whether it is realistic or not. Unlike GANs, our approach does not require joint training of score and discriminator networks. Instead, we train the discriminator after score training, making discriminator training stable and fast to converge. In sample generation, we add an auxiliary term to the pre-trained score to deceive the discriminator. This term corrects the model score to the data score at the optimal discriminator, which implies that the discriminator helps better score estimation in a complementary way. Using our algorithm, we achive state-of-the-art results on ImageNet 256x256 with FID 1.83 and recall 0.64, similar to the validation data's FID (1.68) and recall (0.66). We release the code at https://github.com/alsdudrla10/DG.Comment: International Conference on Machine Learning (ICML23

    Improvisation of classification performance based on feature optimization for differentiation of Parkinson’s disease from other neurological diseases using gait characteristics

    Get PDF
    Most neurological disorders that include Parkinson’s disease (PD) as well as other neurological diseases such as Amyotrophic Lateral Sclerosis (ALS) and Huntington’s disease (HD) have some common abnormalities regarding the movement, vocal, and cognitive behaviors of sufferers. Variations in the manifestation of these types of abnormality help distinguish one disorder from another. In this study, differentiation was performed based on the gait characteristics of patients afflicted by different neurological disorders. In the recent past, many researchers have applied different machine learning and feature selection techniques to the classification of different groups of patients based on common abnormalities. However, in an era of modernization where the focus is on timely low-cost automatization and pattern recognition, such techniques require improvisation to provide high performance. We attempted to improve the performance of such techniques using different feature optimization methods, such as a genetic algorithm (GA) and principal component analysis (PCA), and applying different classification approaches, i.e., linear, nonlinear, and probabilistic classifiers. In this study, gait dynamics data of patients suffering with PD, ALS, and HD were collated from a public database, and a binary classification approach was used by taking PD as one group and adopting ALS+HD as another group. Performance comparison was achieved using different classification techniques that incorporated optimized feature sets obtained from GA and PCA. In comparison with other classifiers using different feature sets, the highest accuracy (97.87%) was obtained using random forest combined with GA-based feature sets. The results provide evidence that could assist medical practitioners in differentiating PD from other neurological diseases using gait characteristics

    Endoscopic Ear Surgery: Paradigm Shift or Subordinate Role?

    Get PDF
    corecore