1,599 research outputs found

    Maximal induced matchings in triangle-free graphs

    Full text link
    An induced matching in a graph is a set of edges whose endpoints induce a 11-regular subgraph. It is known that any nn-vertex graph has at most 10n/51.5849n10^{n/5} \approx 1.5849^n maximal induced matchings, and this bound is best possible. We prove that any nn-vertex triangle-free graph has at most 3n/31.4423n3^{n/3} \approx 1.4423^n maximal induced matchings, and this bound is attained by any disjoint union of copies of the complete bipartite graph K3,3K_{3,3}. Our result implies that all maximal induced matchings in an nn-vertex triangle-free graph can be listed in time O(1.4423n)O(1.4423^n), yielding the fastest known algorithm for finding a maximum induced matching in a triangle-free graph.Comment: 17 page

    Expression of Functional Recombinant Mussel Adhesive Protein Mgfp-5 in Escherichia coli

    Get PDF
    Mussel adhesive proteins have been suggested as a basis for environmentally friendly adhesives for use in aqueous conditions and in medicine. However, attempts to produce functional and economical recombinant mussel adhesive proteins (mainly foot protein type 1) in several systems have failed. Here, the cDNA coding for Mytilus galloprovincialis foot protein type 5 (Mgfp-5) was isolated for the first time. Using this cDNA, we produced a recombinant Mgfp-5 fused with a hexahistidine affinity ligand, which was expressed in a soluble form in Escherichia coli and was highly purified using affinity chromatography. The adhesive properties of purified recombinant Mgfp-5 were compared with the commercial extracted mussel adhesive Cell-Tak by investigating adhesion force using atomic force microscopy, material surface coating, and quartz crystal microbalance. Even though further macroscale assays are needed, these microscale assays showed that recombinant Mgfp-5 has significant adhesive ability and may be useful as a bioadhesive in medical or underwater environments.X119196sciescopu

    Representation in Wales: an empirical analysis of the policy divisions between voters and candidates

    Get PDF
    Politics in Wales is often portrayed as being relatively consensual when compared with the rest of the United Kingdom and enjoying healthy levels of trust between voters and elites. Recent events like the decision of Welsh voters to reject the European Union membership against the advice of most of its political establishment, however, are calling to question this perception. Using 2016 Welsh Candidate Study and 2016 Welsh Election Study data, this paper evaluates the extent of policy divisions between voters and candidates in Wales. I find that candidates hold more liberal policy positions and are less likely to think of immigration as the most important policy priority. In addition, they tend to favour a different approach to parliamentary representation, deeming it more acceptable for Assembly Members to discard the views of their voters in favour of their own views or those of their party

    Quantification of both the area-at-risk and acute myocardial infarct size in ST-segment elevation myocardial infarction using T1-mapping

    Get PDF
    BACKGROUND: A comprehensive cardiovascular magnetic resonance (CMR) in reperfused ST-segment myocardial infarction (STEMI) patients can be challenging to perform and can be time-consuming. We aimed to investigate whether native T1-mapping can accurately delineate the edema-based area-at-risk (AAR) and post-contrast T1-mapping and synthetic late gadolinium (LGE) images can quantify MI size at 1.5 T. Conventional LGE imaging and T2-mapping could then be omitted, thereby shortening the scan duration. METHODS: Twenty-eight STEMI patients underwent a CMR scan at 1.5 T, 3 ± 1 days following primary percutaneous coronary intervention. The AAR was quantified using both native T1 and T2-mapping. MI size was quantified using conventional LGE, post-contrast T1-mapping and synthetic magnitude-reconstructed inversion recovery (MagIR) LGE and synthetic phase-sensitive inversion recovery (PSIR) LGE, derived from the post-contrast T1 maps. RESULTS: Native T1-mapping performed as well as T2-mapping in delineating the AAR (41.6 ± 11.9% of the left ventricle [% LV] versus 41.7 ± 12.2% LV, P = 0.72; R(2) 0.97; ICC 0.986 (0.969-0.993); bias -0.1 ± 4.2% LV). There were excellent correlation and inter-method agreement with no bias, between MI size by conventional LGE, synthetic MagIR LGE (bias 0.2 ± 2.2%LV, P = 0.35), synthetic PSIR LGE (bias 0.4 ± 2.2% LV, P = 0.060) and post-contrast T1-mapping (bias 0.3 ± 1.8% LV, P = 0.10). The mean scan duration was 58 ± 4 min. Not performing T2 mapping (6 ± 1 min) and conventional LGE (10 ± 1 min) would shorten the CMR study by 15-20 min. CONCLUSIONS: T1-mapping can accurately quantify both the edema-based AAR (using native T1 maps) and acute MI size (using post-contrast T1 maps) in STEMI patients without major cardiovascular risk factors. This approach would shorten the duration of a comprehensive CMR study without significantly compromising on data acquisition and would obviate the need to perform T2 maps and LGE imaging

    Full left ventricular coverage is essential for the accurate quantification of the area- at- risk by T1 and T2 mapping

    Get PDF
    T2-weighted cardiovascular magnetic resonance (CMR) using a 3-slice approach has been shown to accurately quantify the edema-based area-at-risk (AAR) in ST-segment elevation myocardial infarction (STEMI). We aimed to compare the performance of a 3-slice approach to full left ventricular (LV) coverage for the AAR by T1 and T2 mapping and MI size. Forty-eight STEMI patients were prospectively recruited and underwent a CMR at 4 ± 2 days. There was no difference between the AARfull LV and AAR3-slices by T1 (P = 0.054) and T2-mapping (P = 0.092), with good correlations but small biases and wide limits of agreements (T1-mapping: N = 30, R2 = 0.85, bias = 1.7 ± 9.4% LV; T2-mapping: N = 48, R2 = 0.75, bias = 1.7 ± 12.9% LV). There was also no significant difference between MI size3-slices and MI sizefull LV (P = 0.93) with an excellent correlation between the two (R2 0.92) but a small bias of 0.5% and a wide limit of agreement of ±7.7%. Although MSI was similar between the 2 approaches, MSI3-slices performed poorly when MSI was <0.50. Furthermore, using AAR3-slices and MI sizefull LV resulted in ‘negative’ MSI in 7/48 patients. Full LV coverage T1 and T2 mapping are more accurate than a 3-slice approach for delineating the AAR, especially in those with MSI < 0.50 and we would advocate full LV coverage in future studies

    Prospective comparison of novel dark blood late gadolinium enhancement with conventional bright blood imaging for the detection of scar

    Get PDF
    BACKGROUND: Conventional bright blood late gadolinium enhancement (bright blood LGE) imaging is a routine cardiovascular magnetic resonance (CMR) technique offering excellent contrast between areas of LGE and normal myocardium. However, contrast between LGE and blood is frequently poor. Dark blood LGE (DB LGE) employs an inversion recovery T2 preparation to suppress the blood pool, thereby increasing the contrast between the endocardium and blood. The objective of this study is to compare the diagnostic utility of a novel DB phase sensitive inversion recovery (PSIR) LGE CMR sequence to standard bright blood PSIR LGE. METHODS: One hundred seventy-two patients referred for clinical CMR were scanned. A full left ventricle short axis stack was performed using both techniques, varying which was performed first in a 1:1 ratio. Two experienced observers analyzed all bright blood LGE and DB LGE stacks, which were randomized and anonymized. A scoring system was devised to quantify the presence and extent of gadolinium enhancement and the confidence with which the diagnosis could be made. RESULTS: A total of 2752 LV segments were analyzed. There was very good inter-observer correlation for quantifying LGE. DB LGE analysis found 41.5% more segments that exhibited hyperenhancement in comparison to bright blood LGE (248/2752 segments (9.0%) positive for LGE with bright blood; 351/2752 segments (12.8%) positive for LGE with DB; p < 0.05). DB LGE also allowed observers to be more confident when diagnosing LGE (bright blood LGE high confidence in 154/248 regions (62.1%); DB LGE in 275/324 (84.9%) regions (p < 0.05)). Eighteen patients with no bright blood LGE were found to have had DB LGE, 15 of whom had no known history of myocardial infarction. CONCLUSIONS: DB LGE significantly increases LGE detection compared to standard bright blood LGE. It also increases observer confidence, particularly for subendocardial LGE, which may have important clinical implications
    corecore