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Abstract
Cauchy polynomials are also called Bernoulli polynomials of the second kind and
these polynomials are very important to study mathematical physics. Kim et al. have
studied some properties of Bernoulli polynomials of the second kind associated with
special polynomials arising from umbral calculus. Kim introduced the degenerate
Cauchy numbers and polynomials which are derived from the degenerate function et .
In this paper, we try to degenerate Cauchy numbers and polynomials k-times and
investigate some properties of these k-times degenerate Cauchy numbers and
polynomials.
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1 Introduction
In [], Comtet introduced Cauchy numbers, denoted by Cn, by the integral of the following
formula:

Cn =
∫ 


(x)n dx =

∫ 


x(x – ) · · · (x – n + ) dx

= n!
∫ 



(
x
n

)
dx. ()

From (), we can derive the generating function as follows:

∞∑
n=

Cn

n!
tn =

∞∑
n=

∫ 



(
x
n

)
dx tn =

∫ 



∞∑
n=

(
x
n

)
tn dx

=
∫ 


( + t)x dx =

t
log( + t)

(see [–]). ()

Also we have

Cn =
∫ 


(x)n dx =

n∑
n=

S(n, n)


n + 
. ()
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In [], Kim introduced a new class of numbers and polynomials which are called the
degenerate Cauchy numbers and polynomials, denoted by Cn,λ and Cn,λ(x), respectively, as
follows:

∫ 



(
 + log( + λt)


λ
)x+y dy =

log( + λt)

λ

log( + log( + λt)

λ )

(
 + log( + λt)


λ
)x

=
∞∑

n=

Cn,λ(x)
tn

n!
. ()

When x = , Cn,λ = Cn,λ() are called the degenerate Cauchy numbers.
The degenerate Cauchy numbers above are degenerated -time from Cauchy numbers

Cn, and we denote these numbers by C()
n,λ.

For r ∈N, the Bernoulli polynomials of order r are defined by the generating function

(
t

et – 

)r

ext =
∞∑

n=

B(r)
n (x)

tn

n!
(see [–, –]). ()

When x = , B(r)
n = B(r)

n () are called Bernoulli numbers of order r. Thus, by (), we get

B(r)
n (x) =

n∑
l=

(
n
l

)
B(r)

l xn–l (see [–, –]). ()

In particular, for r = , Bn(x) = B()
n (x) are called ordinary Bernoulli polynomials. As is well

known, we have

(
t

log( + t)

)r

( + t)x– =
∞∑

n=

B(n–r+)
n (x)

tn

n!
(see []). ()

It is well known that

et = lim
λ→

( + λt)

λ (see [, , ]).

The function ( + λt) 
λ is called the degenerate function of et . So, for t = log et , we have

log( + λt)

λ as the degenerating function. The first quadrant of the following diagram

comes from [].
We extend Kim’s idea (see []) to the k-times degenerate of t = log et , then we have

log( + log( + · · · + log( + λt) · · · ))

λ︸ ︷︷ ︸

k-logarithms

as the k-times degenerating function, see Figure .

In [], Carlitz introduced the degenerate Bernoulli polynomials and explained a degen-
erate Staudt-Clausen theorem. Later Ustinov studied the same concept using the name of
Korobov polynomials of the second kind.

Recently, Kim and Kim introduced Daehee polynomials with λ-parameter for λ ∈ C.
When we approach λ to zero, both the degenerate Bernoulli polynomials and the Daehee
polynomials with λ-parameter approach the well-known Bernoulli polynomials. We find
that the differences are on the numerators of the degenerate Bernoulli and Daehee poly-
nomials with λ-parameter.
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t=log et

numbers what we
want to study

��

degenerate of t

��

∫ 
 (+t)x dx= t

log(+t) ([])
(Cauchy number)

degenerate of t

��

log((+λt)

λ )

want to study
��

-times deg. of t

��

∫ 
 (+log(+λt)


λ )x dx=([])

(deg. Cauchy number)

-times deg. of t

��

log(+log(+λt))

λ

want to study
��

k-times deg. of t

��

∫ 
 (+log(+log(+λt))


λ )x dx=?

(-times deg. Cauchy numbers)

k-times deg. of t

��

log(+log(+···+log(+λt)··· ))

λ︸ ︷︷ ︸

k-logarithms

want to study
��

∫ 
 (+log(+log(+···+log(+λt)··· ))


λ )x dx=?︸ ︷︷ ︸

k-logarithms
(k-times deg. Cauchy numbers)

Figure 1 k-times degenerate Cauchy numbers via consecutive degenerating variable t.

By the use of p-adic invariant integral on Zp, the numerator of the Daehee polynomials
with λ-parameter becomes much more natural (see []).

On the other hand, if we take λ =  on the Daehee polynomials with λ-parameter, we
have the generating function of the Daehee polynomials. If we take x = , then we have
the generating function of the Daehee numbers, which is the multiplicative inverse of the
generating function of the Bernoulli numbers of the second kind (see []). The higher
order Daehee numbers and polynomials are investigated by Kim et al. in [].

Cauchy polynomials are also called Bernoulli polynomials of the second kind and these
polynomials are very important to study mathematical physics. (See [, ].) In [, ],
Kim et al. have studied some properties of Bernoulli polynomials of the second kind as-
sociated with special polynomials arising from umbral calculus.

Kim introduced the degenerate Cauchy numbers and polynomials which are derived
from the degenerate function et (see []). In this paper, we try to degenerate Cauchy num-
bers and polynomials k-times and investigate some properties of these k-times degenerate
Cauchy numbers and polynomials.

For the application, we consider bosonic p-adic integration on Zp for the same integrand
function f (x) = ( + t)x, then we have Daehee numbers which are defined in []. Also,
by considering the degenerate of t as above figure, we have degenerate Daehee numbers
and polynomials. Thus we can apply our idea in this paper to k-times degenerate Daehee
number and polynomials. Then we can get some new identities on these numbers and
polynomials.

In [], Kim et al. introduced the q-analog of the Daehee numbers and polyno-
mials which are called the q-Daehee numbers and polynomials. By using the p-adic
q-integration, the q-Daehee polynomials Dn,q(x) are defined and studied by Kim and Kim
(see []).

We also apply our idea to k-times degenerate q-Daehee numbers and polynomials. We
can get interesting identities on these numbers and polynomials.
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Meanwhile, the degenerate Bernoulli polynomials diverged several ways for further
study. One way is the q-analog of degenerate Bernoulli polynomials by using the p-adic
q-integral on Zp by Kim et al. Another way is considered and studied the partially degen-
erate Bernoulli numbers and polynomials of the first kind and second kind by Kim and
Seo in []. The partially degenerate one uses generating function concept on complex
plane. The hidden idea of this lies on the p-adic invariant integral on Zp. From this idea,
Lim studied partially degenerate Daehee numbers and polynomials (see []).

We can apply k-times partially degenerate idea to such partially degenerate numbers
and polynomials, and we can get interesting identities.

2 k-Times degenerate Cauchy numbers
In [], Kim considered the degenerate Cauchy numbers which are defined by the generat-
ing function

∞∑
n=

C()
n,λ

tn

n!
=

log( + λt)

λ

log( + log( + λt)

λ )

=
∫ 



(
 + log( + λt)


λ
)x dx (see []). ()

The following is shown in [], Corollary ..

Lemma  For n, n, n ≥ , we have

(i) C()
n,λ =

n∑
n=

λn–n S(n, n)Cn ,

(ii) C()
n,λ =

n∑
n=

n∑
n=

λn–n S(n, n)S(n, n)


n + 
.

We degenerate C()
n,λ one more time, i.e., we get -times degenerate Cauchy numbers.

Then the left-hand side of () becomes as follows:

∞∑
n=

C()
n,λ


n!

λ–n
(
log( + λt)

)n

=
∞∑

n=

C()
n,λλ

–n
∞∑

n=n

S(n, n)
λn tn

n!

=
∞∑

n=

( n∑
n=

C()
n,λλ

n–n S(n, n)

)
tn

n!

=
∞∑

n=

n∑
n=

( n∑
n=

λn–n S(n, n)Cn

)
λn–n S(n, n)

tn

n!

=
∞∑

n=

n∑
n=

n∑
n=

λn–n S(n, n)S(n, n)Cn
tn

n!
. ()
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On the other hand, the right-hand side of () becomes as follows:

log( + log( + λt))/λ

log( + (log( + log( + λt)))/λ)
=

∫ 



(
 + log

(
 + log( + λt)

)/λ)x dx

=
∞∑

n=

C()
n,λ

tn

n!
. ()

Thus, comparing the coefficients of () and (), we have

C()
n,λ =

n∑
n=

C()
n,λλ

n–n S(n, n)

=
n∑

n=

n∑
n=

λn–n S(n, n)S(n, n)Cn . ()

Now, replacing Cn in () by
∑n

n= S(n, n) 
n+ in (), we get

C()
n,λ =

n∑
n=

n∑
n=

n∑
n=

λn–n S(n, n)S(n, n)S(n, n)


n + 
. ()

Inductively we get the k-times degenerate Cauchy numbers C(k)
nk+,λ as follows.

Theorem  For ni ≥ , for each i = , , . . . , k + , we have

C(k)
nk+,λ =

nk+∑
nk =

· · ·
n∑

n=

λnk+–n

( k∏
j=

S(nj+, nj)

)
Cn

=
nk+∑
nk =

· · ·
n∑

n=

λnk+–n

( k∏
j=

S(nj+, nj)

)


n + 
. ()

By replacing t by 
λ

(eλt – ) in (), we get

log( + λt)

λ

log( + log( + λt)

λ )

=
∫ 



(
 + log( + λt)


λ
)x dx

=
∞∑

n=

C()
n,λ


n!

(

λ

(
eλt – 

))n

. ()

By (), we have

∞∑
n=

C()
n,λ

tn

n!
=

∞∑
n=

C()
n,λλ

–n (eλt – )n

n!

=
∞∑

n=

C()
n,λλ

–n
∞∑

m=n
S(m, n)

λmtm

m!

=
∞∑

m=

( m∑
n=

C()
n,λλ

m–nS(m, n)

)
tm

m!
, ()
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where S(m, n) is the Stirling number of the second kind. Thus comparing the coefficients
of (), we have the inversion of () as follows:

C()
m,λ =

m∑
n=

C()
n,λλ

m–nS(m, n). ()

Now applying one more time the above process, we obtain the following:

C()
n,λ =

n∑
n=

n∑
n=

C()
n,λλ

n–n S(n, n)S(n, n).

Inductively, we have the following identity.

Theorem  For ni ≥ , where i = , . . . , k + , we have

C()
n,λ =

n∑
n=

n∑
n=

· · ·
nk∑

nk+=

C(k)
nk+,λλ

n–nk+

k∏
i=

S(ni, ni+).

3 k-Times degenerate Cauchy polynomials
We recall that Cauchy polynomials Cn(x) are defined by the generating function as follows:

∞∑
n=

Cn(x)
tn

n!
=

t
log( + t)

( + t)x =
∫ 


( + t)x+y dy (see [–]).

In [], Kim defined the degenerate Cauchy polynomials by the generating function as the
form in (), and in this paper we shall denote these polynomials by C()

n,λ(x).
The following observation has been made in [], Theorem . and Theorem ..

Theorem  For n ≥ , we have

C()
n,λ(x) =

n∑
l=

λn–lS(n, l)
∫ 


(x + y)l dy

=
n∑

l=

λn–lS(n, l)Cl(x)

=
n∑

l=

l∑
m=

λn–lS(n, l)
(

l
m

)
(x)mCl–m. ()

We degenerate C()
n,λ(x) one more time, i.e., we get -times degenerate Cauchy polyno-

mials Cn(x). We have the following identity:

∫ 



((
 + log

(
 + log( + λt)

)) 
λ
)x+y dy

=
log( + log( + λt))


λ

log( + log( + log( + λt))

λ )

(
 + log

(
 + log( + λt)

) 
λ
)x

=
∞∑

n=

C()
n,λ(x)

tn

n!
. ()



Jeong et al. Advances in Difference Equations  (2015) 2015:321 Page 7 of 12

Then the middle term of () becomes

log( + log( + λt))/λ

log( + (log( + log( + λt)))/λ)
(
 + log

(
 + log( + λt)

)/λ)x

=

( ∞∑
l=

C()
l,λ

tl

l!

)( ∞∑
m=

(x)m
[
log

(
 + log( + λt)

)/λ]m 
m!

)

=

( ∞∑
l=

C()
l,λ

tl

l!

)( ∞∑
m=

(x)m

∞∑
j=m

λ–mS(j, m)
(log( + λt))j

j!

)

=

( ∞∑
l=

C()
l,λ

tl

l!

)( ∞∑
m=

m∑
j=

(x)mλ–mS(j, m)S(i, j)
∞∑
i=j

λiti

i!

)

=

( ∞∑
l=

C()
l,λ

tl

l!

)( ∞∑
i=

i∑
j=

j∑
m=

(x)mλi–mS(j, m)S(i, j)
ti

i!

)

=
∞∑

n=

( n∑
i=

(
n
i

) i∑
j=

j∑
m=

(x)mλi–mS(j, m)S(i, j)C()
n–i,λ

)
tn

n!
. ()

Hence, from (), we can rewrite -times degenerate Cauchy polynomials as follows.
For each ni ∈ Z+, where i = , , , . . . ,

C()
n,λ(x) =

n∑
n=

n∑
n=

n∑
n=

(
n

n

)
(x)nλ

n–n

× S(n, n)S(n, n)S(n, n)C()
n–n,λ. ()

We combine () and Theorem , and we have

C()
n,λ(x) =

n∑
n=

n∑
n=

n∑
n=

(
n

n

)
(x)nλ

n–n S(n, n)S(n, n)S(n, n)

×
n–n∑
m=

m∑
m=

(
λn–n–m S(n – n, m)S(m, m)

×
m∑

m=

S(m, m)


m + 

)
. ()

Inductively, we have k-times degenerate Cauchy polynomials as follows.

Theorem  For each ni ∈ Z+, where i = , , . . . , k + , we have

C(k)
nk+,λ(x) =

nk+∑
nk =

· · ·
n∑

n=

(
nk+

nk

)
(x)nλ

nk –n
k∏

j=

S(nj+, nj)C(k)
nk+–nk ,λ

=
nk+∑
nk =

· · ·
n∑

n=

(
nk+

nk

)
(x)nλ

nk –n
k∏

j=

S(nj+, nj) × α,
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where

α =
nk+–nk∑

mk =

mk∑
mk–=

· · ·
m∑

m=

λnk+–nk –mk S(nk+ – nk , mk)
k–∏
i=

S(mi+, mi)


m + 
.

Observing the left-hand side of (), we have the following:

∫ 



(
 + log

(
 + log( + λt)

) 
λ
)x+y dy

=
∞∑
l=

∫ 


(x + y)l dy


l!
(
log

(
 + log( + λt)

) 
λ
)l

=
∞∑
l=

Cl(x)
∞∑

m=l

λ–lS(m, l)
log( + λt)m

m!

=
∞∑
l=

Cl(x)
∞∑

m=l

λ–lS(m, l)
∞∑

j=m

S(j, m)
λjtj

j!

=
∞∑
l=

( j∑
m=

m∑
l=

S(j, m)S(m, l)λj–lCl(x)

)
tj

j!
. ()

By comparing the coefficients of the ends of (), we have the following identity:

C()
n,λ(x) =

n∑
m=

m∑
l=

S(n, m)S(m, l)λn–lCl(x)

=
n∑

m=

m∑
l=

S(n, m)S(m, l)λn–l
l∑

j=

(
l
j

)
(x)jCl–j. ()

By inductively k-times degenerating Cauchy polynomials, we obtain the following.

Theorem  For each ni ≥  where i = , , . . . , k + , we have

C(k)
nk+,λ(x) =

nk+∑
nk =

· · ·
n∑

n=

λnk+–n

( k∏
i=

S(ni+, ni)

)
Cn (x)

=
nk+∑
nk =

· · ·
n∑

n=

n∑
n=

λnk+–n

( k∏
i=

S(ni+, ni)

)
(x)n Cn–n .

By using (), the middle term of () can be expressed by higher order Bernoulli poly-
nomials,

∞∑
m=

B(m)
m (x + )


m!

((
log

(
 + log( + λt)

)) 
λ
)m

=
∞∑

m=

B(m)
m (x + )

∞∑
j=m

λ–jS(j, m)
(log( + λt))j

j!
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=
∞∑

m=

B(m)
m (x + )

∞∑
j=m

λ–jS(j, m)
∞∑
n=j

S(n, j)
λntn

n!

=
∞∑

n=

n∑
j=

j∑
m=

B(m)
m (x + )λ–jS(n, j)S(j, m)

tn

n!
.

Thus

C()
n,λ(x) =

n∑
j=

j∑
m=

B(m)
m (x + )λ–jS(n, j)S(j, m).

Inductively, we have the representation of k-times degenerate Cauchy polynomials via
higher order Bernoulli polynomials.

Theorem  For each ni ≥  where i = , , . . . , k + , we have

C(k)
nk+,λ(x) =

nk+∑
nk =

· · ·
n∑

n=

B(n)
n (x + )λnk+–n ×

k∏
i=

S(ni+, ni).

In particular,

C(k)
nk+

=
nk+∑
nk =

· · ·
n∑

n=

B(n)
n ()λnk+–n ×

k∏
i=

S(ni+, ni).

As is well known, the Cauchy polynomials of the second kind are given by the generating
function

∫ 


( + t)–y+x dy =

t
( + t) log( + t)

( + t)x =
∞∑

n=

C̃n(x)
tn

n!
(see []). ()

Kim defined the degenerate Cauchy polynomials of the second kind as follows:

∫ 



(
 + log( + λt)


λ
)–y+x dy =

log( + λt) 
λ ( + log( + λt) 

λ )x

log( + log( + λt)

λ )( + log( + λt)


λ )

=
∞∑

n=

C̃n,λ(x)
tn

n!
(see []). ()

The following is well known for describing degenerate Cauchy polynomials of the second
kind. We record some results as a theorem for convenience.

Theorem  (Kim []) For l ≥ , we have

C̃l,λ(x) =
l∑

j=

λl–jS(l, j)Cj(x)

=
l∑

j=

λl–jS(l, j)B(j)
j (x) =

∫ 


(x – y)l dy.
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Now we consider degenerating one more time the degenerate Cauchy polynomials of
the second kind as follows:

∫ 



(
 + log

(
 + log( + λt)

) 
λ
)x–y dy

=
log( + log( + λt))


λ ( + log( + log( + λt))


λ )x

log( + log( + log( + λt)) 
λ )( + log( + log( + λt)) 

λ )
=

∞∑
n=

C̃()
n,λ(x)

tn

n!
. ()

Observing the left-hand side of (), we have

∫ 



(
 + log

(
 + log( + λt)

) 
λ
)x–y dy

=
∞∑
l=

∫ 


(x – y)l dy

(
log

(
 + log( + λt)

) 
λ
)l 

l!

=
∞∑
l=

λ–lC̃l,λ(x)
∞∑
n=l

S(n, l)
(log( + λt))n

n!

=
∞∑

n=

n∑
l=

λ–lC̃l,λ(x)S(n, l)
log( + λt)n

n!

=
∞∑
j=

j∑
n=

n∑
l=

λj–lS(j, n)S(n, l)C̃l,λ(x)
tj

j!
. ()

Thus for j ≥ ,

C̃()
j,λ (x) =

j∑
n=

n∑
l=

λj–lS(j, n)S(n, l)C̃l,λ(x).

Now we apply the result of () and Theorem , and we can rewrite C̃()
j,λ (x) as follows.

For j, n, l ≥ , we have

C̃()
j,λ (x) =

j∑
n=

n∑
l=

l∑
i=

λj–iS(j, n)S(n, l)S(l, i)C̃i(x)

=
j∑

n=

n∑
l=

l∑
i=

λj–iS(j, n)S(n, l)S(l, i)B(i)
i (x).

Inductively, we get the following identity for k-times degenerate Cauchy polynomials of
the second kind.

Theorem  For ni ≥ , where i = , , . . . , k + , we have

C̃(k)
nk+,λ(x) =

nk+∑
nk =

nk∑
nk–=

· · ·
n∑

n=

λnk+–n

( k∏
i=

S(ni+, ni)

)
C̃n,λ(x)

=
nk+∑
nk =

nk∑
nk–=

· · ·
n∑

n=

λnk+–n

( k∏
i=

S(ni+, ni)

)
B(n)

n (x).
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Moreover, we have the following:

C̃(k)
nk+,λ(x) =

nk+∑
nk =

· · ·
n∑

n=

λnk+–n
k∏

i=

S(ni+, ni)C̃n (x)

=
nk+∑
nk =

· · ·
n∑

n=

λnk+–n
k∏

i=

S(ni+, ni)B(n)
n (x).

From the left-hand side of (), we have

C̃()
j,λ (x) =

j∑
n=

n∑
l=

λj–lS(j, n)S(n, l)l!
∫ 



(
x – y

l

)
dy

=
j∑

n=

n∑
l=

λj–ll!S(j, n)S(n, l)(–)n
∫ 



(
y + n –  – x

n

)
dy

=
j∑

n=

n∑
l=

l∑
m=

l!
m!

λj–lS(j, n)S(n, l)(–)m
(

n – 
m – 

)
Cm(–x). ()

Therefore, from (), we inductively obtain the following theorem.

Theorem  For ni ≥ , where i = , , . . . , k + , we have

C̃(k)
nk+,λ(x) =

nk+∑
nk =

· · ·
n∑

n=

n!
n!

λnk+–n

( k∏
i=

S(ni+, ni)

)
(–)n

(
nk – 
n – 

)
Cn (–x).
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