358 research outputs found

    Analysis of intrapulse chirp in CO2 oscillators

    Get PDF
    Pulsed single-frequency CO2 laser oscillators are often used as transmitters for coherent lidar applications. These oscillators suffer from intrapulse chirp, or dynamic frequency shifting. If excessive, such chirp can limit the signal-to-noise ratio of the lidar (by generating excess bandwidth), or limit the velocity resolution if the lidar is of the Doppler type. This paper describes a detailed numerical model that considers all known sources of intrapulse chirp. Some typical predictions of the model are shown, and simple design rules to minimize chirp are proposed

    Implications of single-neuron gain scaling for information transmission in networks

    Get PDF
    Summary: 

Many neural systems are equipped with mechanisms to efficiently encode sensory information. To represent natural stimuli with time-varying statistical properties, neural systems should adjust their gain to the inputs' statistical distribution. Such matching of dynamic range to input statistics has been shown to maximize the information transmitted by the output spike trains (Brenner et al., 2000, Fairhall et al., 2001). Gain scaling has not only been observed as a system response property, but also in single neurons in developing somatosensory cortex stimulated with currents of different amplitude (Mease et al., 2010). While gain scaling holds for cortical neurons at the end of the first post-natal week, at birth these neurons lack this property. The observed improvement in gain scaling coincides with the disappearance of spontaneous waves of activity in cortex (Conheim et al., 2010).

We studied how single-neuron gain scaling affects the dynamics of signal transmission in networks, using the developing cortex as a model. In a one-layer feedforward network, we showed that the absence of gain control made the network relatively insensitive to uncorrelated local input fluctuations. As a result, these neurons selectively and synchronously responded to large slowly-varying correlated input--the slow build up of synaptic noise generated in pacemaker circuits which most likely triggers waves. Neurons in gain scaling networks were more sensitive to the small-scale input fluctuations, and responded asynchronously to the slow envelope. Thus, gain scaling both increases information in individual neurons about private inputs and allows the population average to encode the slow fluctuations in the input. Paradoxically, the synchronous firing that corresponds to wave propagation is associated with low information transfer. We therefore suggest that the emergence of gain scaling may help the system to increase information transmission on multiple timescales as sensory stimuli become important later in development. 

Methods:

Networks with one and two layers consisting of hundreds of model neurons were constructed. The ability of single neurons to gain scale was controlled by changing the ratio of sodium to potassium conductances in Hodgkin-Huxley neurons (Mainen et al., 1995). The response of single layer networks was studied with ramp-like stimuli with slopes that varied over several hundreds of milliseconds. Fast fluctuations were superimposed on this slowly-varying mean. Then the response to these networks was tested with continuous stimuli. Gain scaling networks captured the slow fluctuations in the inputs, while non-scaling networks simply thresholded the input. Quantifying information transmission confirmed that gain scaling neurons transmit more information about the stimulus. With the two-layer networks we simulated a cortical network where waves could spontaneously emerge, propagate and degrade, based on the gain scaling properties of the neurons in the network

    Stereoselective synthesis of highly substituted tetrahydrofurans by diverted carbene O–H insertion reaction

    Get PDF
    Copper or rhodium catalyzed reaction of diazocarbonyl compounds with β-hydroxyketones gives highly substituted tetrahydrofurans with excellent diastereoselectivity, under mild conditions, in a single step process that starts as a carbene O–H insertion reaction but is diverted by an intramolecular aldol reaction

    Stereoselective synthesis of highly substituted tetrahydrofurans by diverted carbene O–H insertion reaction

    Get PDF
    Copper or rhodium catalyzed reaction of diazocarbonyl compounds with β-hydroxyketones gives highly substituted tetrahydrofurans with excellent diastereoselectivity, under mild conditions, in a single step process that starts as a carbene O–H insertion reaction but is diverted by an intramolecular aldol reaction

    Origin of the thiopyrone CTP-431 “unexpectedly” isolated from the marine sponge Cacospongia mycofijiensis

    Get PDF
    An intriguing hypothesis that latrunculin A, a well-known natural product, might have undergone transformation into the unprecedented thiopyrone CTP-431 upon long-term storage in methanol is advanced. Thus opening of the hemiacetal of latrunculin A, followed by E1CB elimination, and dehydration would give a polyene that could undergo intramolecular Diels-Alder reaction, followed by methanolysis of the thiazolidinone ring and ring closure by intramolecular thiol addition to an enone. Experimental evidence that the novel thiazolidinone to thiopyrone rearrangement can occur is presented.The marine sponge Cacospongia mycofijiensis, found in the ocean surrounding Fiji, is a source of several polyketide natural products with interesting biological properties,1 including the tubulin binding macrolide fijianolide B (also known as laulimalide),2,3 the HIF1 signal inhibitor mycothiazole,4,5 and the macrolide latrunculins (Figure 1).6 The thiazolidinone-containing latruculins are of mixed polyketide synthesis (PKS) and non-ribosomal peptide synthesis (NRPS) origin, and latrunculin A 1 disrupts microfilament assembly to such an extent that it is the most widely used chemical tool to study actin binding

    Intrinsic Neuronal Properties Switch the Mode of Information Transmission in Networks

    Get PDF
    Diverse ion channels and their dynamics endow single neurons with complex biophysical properties. These properties determine the heterogeneity of cell types that make up the brain, as constituents of neural circuits tuned to perform highly specific computations. How do biophysical properties of single neurons impact network function? We study a set of biophysical properties that emerge in cortical neurons during the first week of development, eventually allowing these neurons to adaptively scale the gain of their response to the amplitude of the fluctuations they encounter. During the same time period, these same neurons participate in large-scale waves of spontaneously generated electrical activity. We investigate the potential role of experimentally observed changes in intrinsic neuronal properties in determining the ability of cortical networks to propagate waves of activity. We show that such changes can strongly affect the ability of multi-layered feedforward networks to represent and transmit information on multiple timescales. With properties modeled on those observed at early stages of development, neurons are relatively insensitive to rapid fluctuations and tend to fire synchronously in response to wave-like events of large amplitude. Following developmental changes in voltage-dependent conductances, these same neurons become efficient encoders of fast input fluctuations over few layers, but lose the ability to transmit slower, population-wide input variations across many layers. Depending on the neurons' intrinsic properties, noise plays different roles in modulating neuronal input-output curves, which can dramatically impact network transmission. The developmental change in intrinsic properties supports a transformation of a networks function from the propagation of network-wide information to one in which computations are scaled to local activity. This work underscores the significance of simple changes in conductance parameters in governing how neurons represent and propagate information, and suggests a role for background synaptic noise in switching the mode of information transmission

    Aortic calcification and femoral bone density are independently associated with left ventricular mass in patients with chronic kidney disease

    Get PDF
    Background Vascular calcification and reduced bone density are prevalent in chronic kidney disease and linked to increased cardiovascular risk. The mechanism is unknown. We assessed the relationship between vascular calcification, femoral bone density and left ventricular mass in patients with stage 3 non-diabetic chronic kidney disease in a cross-sectional observational study. Methodology and Principal Findings A total of 120 patients were recruited (54% male, mean age 55±14 years, mean glomerular filtration rate 50±13 ml/min/1.73 m2). Abdominal aortic calcification was assessed using lateral lumbar spine radiography and was present in 48%. Mean femoral Z-score measured using dual energy x-ray absorptiometry was 0.60±1.06. Cardiovascular magnetic resonance imaging was used to determine left ventricular mass. One patient had left ventricular hypertrophy. Subjects with aortic calcification had higher left ventricular mass compared to those without (56±16 vs. 48±12 g/m2, P = 0.002), as did patients with femoral Z-scores below zero (56±15 vs. 49±13 g/m2, P = 0.01). In univariate analysis presence of aortic calcification correlated with left ventricular mass (r = 0.32, P = 0.001); mean femoral Z-score inversely correlated with left ventricular mass (r = −0.28, P = 0.004). In a multivariate regression model that included presence of aortic calcification, mean femoral Z-score, gender and 24-hour systolic blood pressure, 46% of the variability in left ventricular mass was explained (P<0.001). Conclusions In patients with stage 3 non-diabetic chronic kidney disease, lower mean femoral Z-score and presence of aortic calcification are independently associated with increased left ventricular mass. Further research exploring the pathophysiology that underlies these relationships is warranted

    Nitrogen-bridged, natural product-like octahydrobenzofurans and octahydroindoles: scope and mechanism of bridge-forming reductive amination via caged heteroadamantanes

    Get PDF
    The biological significance of sp3-rich synthetic scaffolds with natural product-like features yet distinct global frameworks is being increasingly recognised in medicinal chemistry and biochemistry. Taking inspiration from the vast array of bioactive, bridged alkaloids, we report the synthesis of unique, densely functionalised tricyclic scaffolds based on nitrogen-bridged, octahydrobenzofurans and octahydroindoles. These heterocycle-rich frameworks were assembled by a one-pot, two-step bridge-forming reductive amination process, which was shown to proceed via caged, heteroadamantane intermediates that thermodynamically drive an exo–endo epimerisation, enabling intramolecular azaMichael addition over the concave face of the fused bicyclic precursors. In addition to evaluating the scope of this aza bridge-forming reaction, further stereochemical complexity was introduced by subsequent diastereoselective ketone reductions and other manipulations. Finally, strategic diversity points (amino, carboxy) were decorated with common medicinal chemistry fragments, providing a set of exemplar derivatives with Lipinski compliant physicochemical properties

    Synthesis of toxyloxanthone B

    Get PDF
    A synthesis of the naturally occurring xanthone toxyloxanthone B is described, in which the key step is the regioselective addition of a methyl salicylate to a substituted benzyne followed by cyclization of the intermediate aryl anion to form the xanthone, the regiochemistry of the aryne addition being confirmed by X-ray crystallography. Subsequent introduction of the pyran ring by [3,3]-rearrangement and deprotection completed the synthesi
    corecore