11 research outputs found

    Differentiation of Leishmania (Viannia) panamensis and Leishmania (V.) guyanensis using BccI for hsp70 PCR-RFLP

    No full text
    Leishmania panamensis and Leishmania guyanensis are two species of the subgenus Viannia that are genetically very similar. Both parasites are usually associated with cutaneous leishmaniasis, but also have the potential to cause the mucocutaneous form of the disease. In addition, the study of foci and consequently the identification of vectors and probable reservoirs involved in transmission require a correct differentiation between both species, which is important at epidemiological level. We explored the possibility of identifying these species by using restriction fragment length polymorphisms (RFLP) in the gene coding for heat-shock protein 70 (hsp70). Previously, an hsp70 PCR-RFLP assay proved to be very effective in differentiating other Leishmania species when HaeIII is used as restriction enzyme. Based on hsp70 sequences analysis, BccI was found to generate species-specific fragments that can easily be recognized by agarose gel electrophoresis. Using the analysis of biopsies, scrapings, and parasite isolates previously grouped in a cluster comprising both L. panamensis and L. guyanensis, we showed that our approach allowed differentiation of both entities. This offers the possibility not only for identification of parasites in biological samples, but also to apply molecular epidemiology in certain countries of the New World, where several Leishmania species could coexist. Copyright 2009 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved

    Antileishmanial activity of 5-nitroindazole derivatives

    No full text
    Background: Currently, there is no safe and effective vaccine against leishmaniasis and existing therapies are inadequate due to high toxicity, cost and decreased efficacy caused by the emergence of resistant parasite strains. Some indazole derivatives have shown in vitro and in vivo activity against Trichomonas vaginalis and Trypanosoma cruzi. On that basis, 20 indazole derivatives were tested in vitro against Leishmania amazonensis. Objective: To evaluate the in vitro activity of twenty 2-benzyl-5-nitroindazolin-3-one derivatives against L. amazonensis. Design: For the selection of promising compounds, it is necessary to evaluate the indicators for in vitro activity. For this aim, a battery of studies for antileishmanial activity and cytotoxicity were implemented. These results enabled the determination of the substituents in the indazole derivatives responsible for activity and selectivity, through the analysis of the structure–activity relationship (SAR). Methods: In vitro cytotoxicity against mouse peritoneal macrophages and growth inhibitory activity in promastigotes were evaluated for 20 compounds. Compounds that showed adequate selectivity were tested against intracellular amastigotes. The SAR from the results in promastigotes was represented using the SARANEA software. Results: Eight compounds showed selectivity index >10% and 50% inhibitory concentration <1 µM against the promastigote stage. Against intracellular amastigotes, four were as active as Amphotericin B. The best results were obtained for 2-(benzyl-2,3-dihydro-5-nitro-3-oxoindazol-1-yl) ethyl acetate, with 50% inhibitory concentration of 0.46 ± 0.01 µM against amastigotes and a selectivity index of 875. The SAR study showed the positive effect on the selectivity of the hydrophilic fragments substituted in position 1 of 2-benzyl-5- nitroindazolin-3-one, which played a key role in improving the selectivity profile of this series of compounds. Conclusion: 2-bencyl-5-nitroindazolin-3-one derivatives showed selective and potent in vitro activity, supporting further investigations on this family of compounds as potential antileishmanial hits.This research did not receive any specific grants from funding agencies in the public, commercial or not-for-profit sectors. We especially thank the International Collaboration Project ‘Strengthening and development of research capacities for the treat- ment of neglected and neglected parasitic diseases’ developed between the Complutense University of Madrid and the Centro de Bioactivos Quìmicos of Cuba. Sergio Sifontes-Rodríguez was financially supported by a postdoctoral DGAPA-UNAM scholarship 2021–2022

    Anti-leishmanial and structure-activity relationship of ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives

    Get PDF
    A series of ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives were synthesized and tested for in vitro leishmanicidal activity against amastigotes of Leishmania amazonensis in axenical cultures and murine infected macrophages. Structure-activity relationships demonstrated the importance of a radical methoxy at position R3', R4' and R5'. (2E)-3-(3,4,5-trimethoxy-phenyl)-1-(3,6,7-trimethyl-1,4-dioxy-quinoxalin-2-yl)-propenone was the most active. Cytotoxicity on macrophages revealed that this product was almost six times more active than toxic
    corecore