8 research outputs found

    Specific Dietary Components and Gut Microbiota Composition are Associated with Obesity in Children and Adolescents with Prader-Willi Syndrome

    Get PDF
    Prader-Willi syndrome is a rare genetic disorder associated with impaired body composition, hyperphagia, and excessive weight gain. Strict dietary restrictions from an early age is crucial to prevent or delay the early onset of obesity, which is the main driver of comorbidities in these patients. The aim of this study was to identify dietary and gut microbiota components closely linked to weight status of these patients. We studied a cohort of children and adolescents with genetic diagnosis of Prader-Willi syndrome (N = 31), in which we determined adiposity by Dual-energy X-ray absorptiometry (DXA) and dietary composition with 4-day food records. Furthermore, we obtained fecal samples to assess microbiota composition by 16S sequencing. Multivariate regression models showed that body mass index standard deviation score (BMI-SDS) and body fat mass were directly associated with saturated fat intake and meat consumption, and inversely associated with fruit consumption. Furthermore, the gut microbiome from normal weight patients was characterized by higher phylogenetic diversity compared to those overweight or obese, with differential abundance of several genera, including Alistipes, Klebsiella, and Murimonas. Notably, Alistipes abundance was inversely correlated to adiposity, lipid and glucose homeostasis parameters, and meat intake. Our results suggest that limiting meat and increasing fruit intake might be beneficial for body weight management in children and adolescents with Prader-Willi syndrome

    Effects of Bifidobacterium animalis Subsp. lactis (BPL1) Supplementation in Children and Adolescents with Prader-Willi Syndrome : A Randomized Crossover Trial

    Get PDF
    Prader-Willi syndrome (PWS) is a rare genetic disorder characterized by a wide range of clinical manifestations, including obesity, hyperphagia, and behavioral problems. Bifidobacterium animalis subsp. lactis strain BPL1 has been shown to improve central adiposity in adults with simple obesity. To evaluate BPL1's effects in children with PWS, we performed a randomized crossover trial among 39 patients (mean age 10.4 years). Participants were randomized to placebo-BPL1 (n = 19) or BPL1-placebo (n = 20) sequences and underwent a 12-week period with placebo/BPL1 treatments, a 12-week washout period, and a 12-week period with the crossover treatment. Thirty-five subjects completed the study. The main outcome was changes in adiposity, measured by dual-energy X-ray absorptiometry. Secondary outcomes included lipid and glucose metabolism, hyperphagia, and mental health symptoms. Generalized linear modeling was applied to assess differences between treatments. While BPL1 did not modify total fat mass compared to placebo, BPL1 decreased abdominal adiposity in a subgroup of patients older than 4.5 years (n = 28). BPL1 improved fasting insulin concentration and insulin sensitivity. Furthermore, we observed modest improvements in some mental health symptoms. A follow-up trial with a longer treatment period is warranted to determine whether BPL1 supplementation can provide a long-term therapeutic approach for children with PWS (ClinicalTrials.gov NCT03548480)

    Effects of Bifidobacterium animalis Subsp. lactis (BPL1) Supplementation in Children and Adolescents with Prader-Willi Syndrome: A Randomized Crossover Trial

    Get PDF
    Prader-Willi syndrome (PWS) is a rare genetic disorder characterized by a wide range of clinical manifestations, including obesity, hyperphagia, and behavioral problems. Bifidobacterium animalis subsp. lactis strain BPL1 has been shown to improve central adiposity in adults with simple obesity. To evaluate BPL1's effects in children with PWS, we performed a randomized crossover trial among 39 patients (mean age 10.4 years). Participants were randomized to placebo-BPL1 (n = 19) or BPL1-placebo (n = 20) sequences and underwent a 12-week period with placebo/BPL1 treatments, a 12-week washout period, and a 12-week period with the crossover treatment. Thirty-five subjects completed the study. The main outcome was changes in adiposity, measured by dual-energy X-ray absorptiometry. Secondary outcomes included lipid and glucose metabolism, hyperphagia, and mental health symptoms. Generalized linear modeling was applied to assess differences between treatments. While BPL1 did not modify total fat mass compared to placebo, BPL1 decreased abdominal adiposity in a subgroup of patients older than 4.5 years (n = 28). BPL1 improved fasting insulin concentration and insulin sensitivity. Furthermore, we observed modest improvements in some mental health symptoms. A follow-up trial with a longer treatment period is warranted to determine whether BPL1 supplementation can provide a long-term therapeutic approach for children with PWS (ClinicalTrials.gov NCT03548480)

    Targeting the Gut Microbiome in Prader-Willi Syndrome

    No full text
    Overwhelming evidence demonstrates an important role of the gut microbiome in the development of a wide range of diseases, including obesity, metabolic disorders, and mental health symptoms. Indeed, interventions targeting the gut microbiome are being actively investigated as a therapeutic strategy to tackle these diseases. Given that obesity and mental health symptoms are both hallmarks of Prader-Willi syndrome, targeting the gut microbiome may be a promising therapeutical strategy. Only a few studies have investigated the gut microbiome in the context of Prader-Willi syndrome and assessed the efficacy of probiotic supplementation as a therapeutic strategy for this disease. Here, we review the knowledge obtained to this date regarding the gut microbiome in individuals with Prader-Willi syndrome. The limited evidence available indicate that probiotic supplementation improves some metabolic and mental health aspects, however further studies are warranted to determine whether targeting the gut microbiome may constitute a safe and efficient strategy to treat individuals with Prader-Willi syndrome

    Relationship between adiponectin, TNFα, and SHBG in prepubertal children with obesity

    Get PDF
    Sex hormone-binding globulin (SHBG) levels are low in adult subjects with obesity when compared to normal-weight individuals. Obesity is associated with higher tumor necrosis factor alpha (TNFα) plasma levels and lower adiponectin levels. Moreover, we have recently elucidated the molecular mechanisms by which TNFα and adiponectin regulate hepatic SHBG production. The main objective of this study was to assess if the adult associations between TNFα, adiponectin, and SHBG are present in prepubertal children. We determined several morphometric and biochemical parameters in normal-weight (n =15) and obese prepubertal (n =51) children, as well as quantified plasma SHBG, TNFα receptor 1 (TNFα-R1), and adiponectin levels. Our results showed that prepubertal children with obesity had decreased plasma SHBG levels compared to normal-weight controls (67 nmol/L vs 172 nmol/L). Importantly, SHBG plasma levels correlated significantly (P < 0.05) with TNFα (negatively, ßstd= − 0.31) and adiponectin (positively, ßstd= 0.58) suggesting an important role of these two cytokines in determining plasma SHBG levels in prepubertal children. Our results suggest that plasma adiponectin levels may play a more important role than TNFα in influencing plasma SHBG levels in our prepubertal population with obesity

    Relationship between adiponectin, TNFα, and SHBG in prepubertal children with obesity

    No full text
    Sex hormone-binding globulin (SHBG) levels are low in adult subjects with obesity when compared to normal-weight individuals. Obesity is associated with higher tumor necrosis factor alpha (TNFα) plasma levels and lower adiponectin levels. Moreover, we have recently elucidated the molecular mechanisms by which TNFα and adiponectin regulate hepatic SHBG production. The main objective of this study was to assess if the adult associations between TNFα, adiponectin, and SHBG are present in prepubertal children. We determined several morphometric and biochemical parameters in normal-weight (n =15) and obese prepubertal (n =51) children, as well as quantified plasma SHBG, TNFα receptor 1 (TNFα-R1), and adiponectin levels. Our results showed that prepubertal children with obesity had decreased plasma SHBG levels compared to normal-weight controls (67 nmol/L vs 172 nmol/L). Importantly, SHBG plasma levels correlated significantly (P < 0.05) with TNFα (negatively, ßstd= − 0.31) and adiponectin (positively, ßstd= 0.58) suggesting an important role of these two cytokines in determining plasma SHBG levels in prepubertal children. Our results suggest that plasma adiponectin levels may play a more important role than TNFα in influencing plasma SHBG levels in our prepubertal population with obesity

    Specific Dietary Components and Gut Microbiota Composition are Associated with Obesity in Children and Adolescents with Prader-Willi Syndrome

    Get PDF
    Prader-Willi syndrome is a rare genetic disorder associated with impaired body composition, hyperphagia, and excessive weight gain. Strict dietary restrictions from an early age is crucial to prevent or delay the early onset of obesity, which is the main driver of comorbidities in these patients. The aim of this study was to identify dietary and gut microbiota components closely linked to weight status of these patients. We studied a cohort of children and adolescents with genetic diagnosis of Prader-Willi syndrome (N = 31), in which we determined adiposity by Dual-energy X-ray absorptiometry (DXA) and dietary composition with 4-day food records. Furthermore, we obtained fecal samples to assess microbiota composition by 16S sequencing. Multivariate regression models showed that body mass index standard deviation score (BMI-SDS) and body fat mass were directly associated with saturated fat intake and meat consumption, and inversely associated with fruit consumption. Furthermore, the gut microbiome from normal weight patients was characterized by higher phylogenetic diversity compared to those overweight or obese, with differential abundance of several genera, including Alistipes, Klebsiella, and Murimonas. Notably, Alistipes abundance was inversely correlated to adiposity, lipid and glucose homeostasis parameters, and meat intake. Our results suggest that limiting meat and increasing fruit intake might be beneficial for body weight management in children and adolescents with Prader-Willi syndrom

    Effects of Bifidobacterium animalis Subsp. lactis (BPL1) Supplementation in Children and Adolescents with Prader–Willi Syndrome: A Randomized Crossover Trial

    No full text
    Prader&ndash;Willi syndrome (PWS) is a rare genetic disorder characterized by a wide range of clinical manifestations, including obesity, hyperphagia, and behavioral problems. Bifidobacterium animalis subsp. lactis strain BPL1 has been shown to improve central adiposity in adults with simple obesity. To evaluate BPL1&prime;s effects in children with PWS, we performed a randomized crossover trial among 39 patients (mean age 10.4 years). Participants were randomized to placebo&ndash;BPL1 (n = 19) or BPL1&ndash;placebo (n = 20) sequences and underwent a 12-week period with placebo/BPL1 treatments, a 12-week washout period, and a 12-week period with the crossover treatment. Thirty-five subjects completed the study. The main outcome was changes in adiposity, measured by dual-energy X-ray absorptiometry. Secondary outcomes included lipid and glucose metabolism, hyperphagia, and mental health symptoms. Generalized linear modeling was applied to assess differences between treatments. While BPL1 did not modify total fat mass compared to placebo, BPL1 decreased abdominal adiposity in a subgroup of patients older than 4.5 years (n = 28). BPL1 improved fasting insulin concentration and insulin sensitivity. Furthermore, we observed modest improvements in some mental health symptoms. A follow-up trial with a longer treatment period is warranted to determine whether BPL1 supplementation can provide a long-term therapeutic approach for children with PWS (ClinicalTrials.gov NCT03548480)
    corecore