10 research outputs found

    Infant antibody and B-cell responses following confirmed pediatric GII.17 norovirus infections functionally distinguish GII.17 genetic clusters

    Get PDF
    Genogroup II (GII) noroviruses are a major cause of diarrheal disease burden in children in both high- and low-income countries. GII.17 noroviruses are composed of distinct genetic clusters (I, II, IIIa, and IIIb) and have shown potential for replacing historically more prevalent GII.4 strains, but the serological basis for GII.17 antigenic diversity has not been studied in children. Utilizing samples from a birth cohort, we investigated antibody and B-cell responses to GII.17 cluster variants in confirmed GII.17 infections in young children as well as demonstrated that the distinct genetic clusters co-circulate. Polyclonal serum antibodies bound multiple clusters but showed cluster-specific blockade activity in a surrogate virus neutralization assay. Antibodies secreted by immortalized memory B cells (MBCs) from an infant GII.17 case were highly specific to GII.17 and exhibited blockade activity against this genotype. We isolated an MBC-derived GII.17-specific Immunoglobulin A (IgA) monoclonal antibody called NVA.1 that potently and selectively blocked GII.17 cluster IIIb and recognized an epitope targeted in serum from cluster IIIb–infected children. These data indicate that multiple antigenically distinct GII.17 variants co-circulate in young children, suggesting retention of cluster diversity alongside potential for immune escape given the existence of antibody-defined cluster-specific epitopes elicited during infection

    Infant antibody and B-cell responses following confirmed pediatric GII.17 norovirus infections functionally distinguish GII.17 genetic clusters

    Get PDF
    Genogroup II (GII) noroviruses are a major cause of diarrheal disease burden in children in both high- and low-income countries. GII.17 noroviruses are composed of distinct genetic clusters (I, II, IIIa, and IIIb) and have shown potential for replacing historically more prevalent GII.4 strains, but the serological basis for GII.17 antigenic diversity has not been studied in children. Utilizing samples from a birth cohort, we investigated antibody and B-cell responses to GII.17 cluster variants in confirmed GII.17 infections in young children as well as demonstrated that the distinct genetic clusters co-circulate. Polyclonal serum antibodies bound multiple clusters but showed cluster-specific blockade activity in a surrogate virus neutralization assay. Antibodies secreted by immortalized memory B cells (MBCs) from an infant GII.17 case were highly specific to GII.17 and exhibited blockade activity against this genotype. We isolated an MBC-derived GII.17-specific Immunoglobulin A (IgA) monoclonal antibody called NVA.1 that potently and selectively blocked GII.17 cluster IIIb and recognized an epitope targeted in serum from cluster IIIb–infected children. These data indicate that multiple antigenically distinct GII.17 variants co-circulate in young children, suggesting retention of cluster diversity alongside potential for immune escape given the existence of antibody-defined cluster-specific epitopes elicited during infection

    Metagenomic sequencing generates the whole genomes of porcine rotavirus A, C, and H from the United States.

    No full text
    The genus Rotavirus comprises eight species, designated A to H, and two recently identified tentative species I in dogs and J in bats. Species Rotavirus A, B, C and H (RVA, RVB, RVC and RVH) have been detected in humans and animals. While human and animal RVA are well characterized and defined, complete porcine genome sequences in the GenBank are limited compared to human strains. Here, we used a metagenomic approach to sequence the 11 segments of RVA, RVC and RVH strains from piglets in the United States (US) and explore the evolutionary relations of these RV species. Metagenomics identified Astroviridae, Picornaviridae, Caliciviridae, Coronoviridae in samples MN9.65 and OK5.68 while Picobirnaviridae and Arteriviridae were only identified in sample OK5.68. Whole genome sequencing and phylogenetic analyses identified multiple genotypes with the RVA of strain MN9.65 and OK5.68, with the genome constellation of G5/G9-P[7]/P[13]-I5/I5- R1/R1-C1-M1-A8-N1-T7-E1/E1-H1 and G5/G9-P[6]/P[7]-I5-R1/R1-C1-M1-A8-N1-T1/T7-E1/E1-H1, respectively. The RVA strains had a complex evolutionary relationship with other mammalian strains. The RVC strain OK5.68 had a genome constellation of G9-P[6]-I1-R1-C5-M6-A5-N1-T1-E1-H1, and shared an evolutionary relationship with porcine strains from the US. The RVH strains MN9.65 and OK5.68 had the genome constellation of G5-P1-I1-R1-C1-M1-A5-N1-T1-E4-H1 and G5-P1-I1-R1-C1-M1-A5-N1-T1-E1-H1, indicating multiple RVH genome constellations are circulating in the US. These findings allow us to understand the complexity of the enteric virome, develop improved screening methods for RVC and RVH strains, facilitate expanded rotavirus surveillance in pigs, and increase our understanding of the origin and evolution of rotavirus species

    DataSheet_1_Infant antibody and B-cell responses following confirmed pediatric GII.17 norovirus infections functionally distinguish GII.17 genetic clusters.pdf

    No full text
    Genogroup II (GII) noroviruses are a major cause of diarrheal disease burden in children in both high- and low-income countries. GII.17 noroviruses are composed of distinct genetic clusters (I, II, IIIa, and IIIb) and have shown potential for replacing historically more prevalent GII.4 strains, but the serological basis for GII.17 antigenic diversity has not been studied in children. Utilizing samples from a birth cohort, we investigated antibody and B-cell responses to GII.17 cluster variants in confirmed GII.17 infections in young children as well as demonstrated that the distinct genetic clusters co-circulate. Polyclonal serum antibodies bound multiple clusters but showed cluster-specific blockade activity in a surrogate virus neutralization assay. Antibodies secreted by immortalized memory B cells (MBCs) from an infant GII.17 case were highly specific to GII.17 and exhibited blockade activity against this genotype. We isolated an MBC-derived GII.17-specific Immunoglobulin A (IgA) monoclonal antibody called NVA.1 that potently and selectively blocked GII.17 cluster IIIb and recognized an epitope targeted in serum from cluster IIIb–infected children. These data indicate that multiple antigenically distinct GII.17 variants co-circulate in young children, suggesting retention of cluster diversity alongside potential for immune escape given the existence of antibody-defined cluster-specific epitopes elicited during infection.</p

    Controlled Iontophoresis Coupled with Fast-Scan Cyclic Voltammetry/Electrophysiology in Awake, Freely Moving Animals

    No full text
    [Image: see text] Simultaneous electrochemical and electrophysiological data were recorded to evaluate the effects of controlled local application of dopaminergic agonists and antagonists in awake rats. Measurements were made with a probe consisting of a carbon-fiber microelectrode fused to three iontophoretic barrels used to introduce the drugs of interest. The probe and the manipulator used to position it in the brain of behaving animals were optimized to improve their performance. The effect of the dopamine autoreceptor on electrically stimulated release was demonstrated. Dopamine inhibited the release of endogenous dopamine whereas raclopride, a D2 antagonist, enhanced it, with similar responses in anesthetized and awake animals. We also examined changes in the firing rate of nucleus accumbens (NAc) neurons in awake animals during and after brief (15 s) iontophoretic ejections of SCH 23390 (D1 receptor antagonist) or raclopride. Changes in response to these antagonists were seen both immediately and on a prolonged time scale. Application of raclopride increased the firing rate in 40% of medium spiny neurons (MSNs), of which half responded immediately. Decreases in firing rate were observed in 46% of MSNs after SCH 23390 application. Only 11% of MSNs responded to both antagonists and one MSN (3%) showed no response to either drug. The same prolonged response in firing rate was seen for electrically stimulated and locally applied dopamine in 75% of MSNs. These results are in agreement with previously reported distributions for dopamine receptor subtypes on MSNs and probe the effects of dopamine on these cell populations

    Evolution of genes and genomes on the Drosophila phylogeny

    No full text
    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species

    Evolution of genes and genomes on the Drosophila phylogeny

    Get PDF
    Affiliations des auteurs : cf page 216 de l'articleInternational audienceComparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species

    Incidence of severe critical events in paediatric anaesthesia (APRICOT): a prospective multicentre observational study in 261 hospitals in Europe

    No full text
    Background Little is known about the incidence of severe critical events in children undergoing general anaesthesia in Europe. We aimed to identify the incidence, nature, and outcome of severe critical events in children undergoing anaesthesia, and the associated potential risk factors. Methods The APRICOT study was a prospective observational multicentre cohort study of children from birth to 15 years of age undergoing elective or urgent anaesthesia for diagnostic or surgical procedures. Children were eligible for inclusion during a 2-week period determined prospectively by each centre. There were 261 participating centres across 33 European countries. The primary endpoint was the occurence of perioperative severe critical events requiring immediate intervention. A severe critical event was defined as the occurrence of respiratory, cardiac, allergic, or neurological complications requiring immediate intervention and that led (or could have led) to major disability or death. This study is registered with ClinicalTrials.gov, number NCT01878760. Findings Between April 1, 2014, and Jan 31, 2015, 31â127 anaesthetic procedures in 30â874 children with a mean age of 6·35 years (SD 4·50) were included. The incidence of perioperative severe critical events was 5·2% (95% CI 5·0â5·5) with an incidence of respiratory critical events of 3·1% (2·9â3·3). Cardiovascular instability occurred in 1·9% (1·7â2·1), with an immediate poor outcome in 5·4% (3·7â7·5) of these cases. The all-cause 30-day in-hospital mortality rate was 10 in 10â000. This was independent of type of anaesthesia. Age (relative risk 0·88, 95% CI 0·86â0·90; p<0·0001), medical history, and physical condition (1·60, 1·40â1·82; p<0·0001) were the major risk factors for a serious critical event. Multivariate analysis revealed evidence for the beneficial effect of years of experience of the most senior anaesthesia team member (0·99, 0·981â0·997; p<0·0048 for respiratory critical events, and 0·98, 0·97â0·99; p=0·0039 for cardiovascular critical events), rather than the type of health institution or providers. Interpretation This study highlights a relatively high rate of severe critical events during the anaesthesia management of children for surgical or diagnostic procedures in Europe, and a large variability in the practice of paediatric anaesthesia. These findings are substantial enough to warrant attention from national, regional, and specialist societies to target education of anaesthesiologists and their teams and implement strategies for quality improvement in paediatric anaesthesia. Funding European Society of Anaesthesiology

    Incidence of severe critical events in paediatric anaesthesia (APRICOT): a prospective multicentre observational study in 261 hospitals in Europe

    No full text
    Background Little is known about the incidence of severe critical events in children undergoing general anaesthesia in Europe. We aimed to identify the incidence, nature, and outcome of severe critical events in children undergoing anaesthesia, and the associated potential risk factors. Methods The APRICOT study was a prospective observational multicentre cohort study of children from birth to 15 years of age undergoing elective or urgent anaesthesia for diagnostic or surgical procedures. Children were eligible for inclusion during a 2-week period determined prospectively by each centre. There were 261 participating centres across 33 European countries. The primary endpoint was the occurence of perioperative severe critical events requiring immediate intervention. A severe critical event was defined as the occurrence of respiratory, cardiac, allergic, or neurological complications requiring immediate intervention and that led (or could have led) to major disability or death. This study is registered with ClinicalTrials.gov, number NCT01878760. Findings Between April 1, 2014, and Jan 31, 2015, 31 127 anaesthetic procedures in 30 874 children with a mean age of 6.35 years (SD 4.50) were included. The incidence of perioperative severe critical events was 5.2% (95% CI 5.0-5.5) with an incidence of respiratory critical events of 3.1% (2.9-3.3). Cardiovascular instability occurred in 1.9% (1.7-2.1), with an immediate poor outcome in 5.4% (3.7-7.5) of these cases. The all-cause 30-day in-hospital mortality rate was 10 in 10 000. This was independent of type of anaesthesia. Age (relative risk 0.88, 95% CI 0.86-0.90; p<0.0001), medical history, and physical condition (1.60, 1.40-1.82; p<0.0001) were the major risk factors for a serious critical event. Multivariate analysis revealed evidence for the beneficial effect of years of experience of the most senior anaesthesia team member (0.99, 0.981-0.997; p<0.0048 for respiratory critical events, and 0.98, 0.97-0.99; p=0.0039 for cardiovascular critical events), rather than the type of health institution or providers. Interpretation This study highlights a relatively high rate of severe critical events during the anaesthesia management of children for surgical or diagnostic procedures in Europe, and a large variability in the practice of paediatric anaesthesia. These findings are substantial enough to warrant attention from national, regional, and specialist societies to target education of anaesthesiologists and their teams and implement strategies for quality improvement in paediatric anaesthesia
    corecore