914 research outputs found

    The Cosmic Ray p+He energy spectrum in the 3-3000 TeV energy range measured by ARGO-YBJ

    Full text link
    The ARGO-YBJ experiment is a full coverage air shower detector operated at the Yangbajing International Cosmic Ray Observatory. The detector has been in stable data taking in its full configuration since November 2007 to February 2013. The high altitude and the high segmentation and spacetime resolution offer the possibility to explore the cosmic ray energy spectrum in a very wide range, from a few TeV up to the PeV region. The high segmentation allows a detailed measurement of the lateral distribution, which can be used in order to discriminate showers produced by light and heavy elements. In this work we present the measurement of the cosmic ray light component spectrum in the energy range 3-3000 TeV. The analysis has been carried out by using a two-dimensional unfolding method based on the Bayes' theorem.Comment: Talk given at RICAP14 conferenc

    Cosmic ray light component (p+He) energy spectrum measured by the ARGO–YBJ experiment in the 3–3000 TeV energy range

    Get PDF
    The energy spectrum and composition of Cosmic Rays (CR) play an important role in the understanding of the acceleration and propagation mechanisms of high-energy particles. The ARGO–YBJ experiment (Yanbajing, Tibet, P. R. China, 4300 m a.s.l.) is a ground-based air shower detector designed in order to detect showers produced by primaries in the 1–104 TeV energy range. The high spacetime resolution of the detector allows a precise measurement of the lateral particle distribution. This information can be exploited in order to discriminate showers produced by primaries of different mass. In this work the measurement of the Proton plus Helium energy spectrum is presented in the 1–3000TeV energy range. A deviation from a single power law is clearly evident at energies less than 1PeV

    Atmospheric neutrino spectrum reconstruction with JUNO

    Full text link
    The atmospheric neutrino flux represents a continuous source that can be exploited to infer properties about Cosmic Rays and neutrino oscillation physics. The JUNO observatory, a 20 kt liquid scintillator currently under construction in China, will be able to detect atmospheric neutrinos , given the large fiducial volume and the excellent energy resolution. The light produced in neutrino interactions will be collected by a double-system of photosensors: about 18.000 20" PMTs and about 25.000 3" PMTs. The rock overburden above the experimental hall is around 700 m and the experiment is expected to complete construction in 2021. In this study, the JUNO performances in reconstructing the atmospheric neutrino spectrum have been evaluated. The different time evolution of scintillation light on the PMTs allows to discriminate the flavor of the primary neutrinos. To reconstruct the time pattern of events, the signals from 3" PMTs only have been used, because of the small time resolution. A probabilistic unfolding method has been used, in order to infer the primary neutrino energy spectrum by looking at the detector output. The simulated spectrum has been reconstructed between 100 MeV and 10 GeV, showing a great potential of the detector in the atmospheric low energy region. The uncertainties on the final flux, including both statistic and the systematic contributions, range between 10% and 25%, with the best performances obtained at the GeV.Comment: 7 pages, 7 figures. Proceeding for a parallel talk at the 2019 EPS-HEP Conference. arXiv admin note: text overlap with arXiv:1901.1034

    The contradictory effect of the methoxy-substituent in palladium-catalyzed ethylene/methyl acrylate cooligomerization

    Get PDF
    Two new nonsymmetric bis(aryl-imino)acenaphthene ligands (Ar,Ar'-BIAN) and one symmetric Ar2-BIAN were studied. The three ligands share the presence of at least one methoxy group on one of the two aryl rings. These ligands were used for the synthesis of neutral and monocationic palladium(II) complexes of general formula [Pd(CH3)Cl(N-N)] and [Pd(CH3)(L)(N-N)][PF6] (N-N = Ar,Ar'-BIAN, Ar2-BIAN; L = CH3CN, dmso). Due to the nonsymmetric nature of the ligands and their coordination to palladium in a nonsymmetric chemical environment, cis and trans isomers are possible for the three series of complexes with Ar,Ar'-BIANs. Both a detailed NMR investigation in solution and the X-ray characterization in solid state point out that the trans isomer is the preferred species for the neutral derivatives, whereas for the cationic compounds a decrease in the stereoselectivity of the coordination is observed. One of the new Ar,Ar'-BIANs differs from an already reported nonsymmetric \uf061-diimine for the replacement, on one aryl ring, of a methyl group with a methoxy susbtituent, thus allowing a comparison of the structural features of the relevant complexes. The monocationic complexes were tested as precatalysts for the ethylene/methyl acrylate copolymerization under mild reaction conditions. Despite the structural similarities observed in solution with the already known precatalysts, the present compounds demonstrated a remarkable decrease in the productivity values associated to a higher affinity for the polar monomer

    Henoch-Schönlein Purpura in children: Not only kidney but also lung

    Get PDF
    Background: Henoch-Sch\uf6nlein Purpura (HSP) is the most common vasculitis of childhood and affects the small blood vessels. Pulmonary involvement is a rare complication of HSP and diffuse alveolar hemorrhage (DAH) is the most frequent clinical presentation. Little is known about the real incidence of lung involvement during HSP in the pediatric age and about its diagnosis, management and outcome. Methods: In order to discuss the main clinical findings and the diagnosis and management of lung involvement in children with HSP, we performed a review of the literature of the last 40 years. Results: We identified 23 pediatric cases of HSP with lung involvement. DAH was the most frequent clinical presentation of the disease. Although it can be identified by chest x-ray (CXR), bronchoalveolar lavage (BAL) is the gold standard for diagnosis. Pulse methylprednisolone is the first-line of therapy in children with DAH. An immunosuppressive regimen consisting of cyclophosphamide or azathioprine plus corticosteroids is required when respiratory failure occurs. Four of the twenty-three patients died, while 18 children had a resolution of the pulmonary involvement. Conclusions: DAH is a life-threatening complication of HSP. Prompt diagnosis and adequate treatment are essential in order to achieve the best outcome

    From: Trash to resource: Recovered-Pd from spent three-way catalysts as a precursor of an effective photo-catalyst for H2 production

    Get PDF
    The successful production of a nanostructured and highly dispersed Pd-TiO2 photo-catalyst, using [Pd(Me2dazdt)2](I3)2 (Me2dazdt = N,N\u2032-dimethyl-perhydrodiazepine-2,3-dithione) salt, obtained through the selective and safe recovery of palladium from model exhaust three-way catalysts (TWCs), is reported here. The photo-catalyst prepared by the impregnation/photo-reduction of palladium on the support showed improved performance in H2 production from methanol and in glycerol photo-reforming compared to reference photo-catalysts obtained from conventional Pd-salts. The reported results represent a case of successful palladium \u201crecovery and re-employment\u201d and thus constitute an example of green chemistry by providing, in one route, the environmentally friendly recovery of a critical metal and its employment in the renewable energy field

    Unraveling the effect of proliferative stress in vivo in hematopoietic stem cell gene therapy mouse study

    Get PDF
    The hematopoietic system of patients enrolled in hematopoietic stem cells (HSC) gene therapy (GT) treatments is fully reconstituted upon autologous transplantation of engineered stem cells. HSCs highly proliferate up to full restoration of homeostasis and compete for niche homing and engraftment. The impact of the proliferation stress in HSC on genetic instability remains an open question that cured patients advocate for characterizing long-term safety and efficacy. The accumulation of somatic mutations has been widely used as a sensor of proliferative stress. Vector integration site (IS) can be used as a molecular tool for clonal identity, inherited by all HSC progeny, to uncover lineage dynamics in vivo at single-cell level. Here we characterized at single-clone granularity the proliferative stress of HSCs and their progeny over time by measuring the accumulation of mutations from the DNA of each IS. To test the feasibility of the approach, we set-up an experimental framework that combines tumor-prone Cdkn2a-/- and wild type (WT) mouse models of HSC-GT and molecular analyses on different hematopoietic cell lineages after transplantation of HSCs transduced with genotoxic LV (LV.SF.LTR) or GT-like non-genotoxic LV (SIN.LV.PGK). The Cdkn2a-/- mouse model provided the experimental conditions to detect the accumulation of somatic mutations, since the absence of p16INK4A and p19ARF enhances the proliferative potential of cells that have acquired oncogenic mutations. As expected, mice transplanted with Cdkn2a-/- Lin- cells marked with LV.SF.LTR (N=24) developed tumors significantly earlier compared to mock (N=20, p<0.0001), while mice treated with SIN. LV.PGK (N=23) did not. On the other side, mice that received WT Lin- cells treated with LV.SF.LTR (N=25) or SIN.LV.PGK (N=24) vector have not developed tumors. Given this scenario, we expect that Cdkn2a-/- Lin- cells transduced with LV.SF.LTR are associated with higher mutation rates compared to the SIN.LV.PGK group and wild type control mice. The composition of peripheral blood, lymphoid (B and T) and myeloid compartments was assessed by FACS on samples collected every 4 weeks and IS identification. More than 200,000 IS have been recovered. To identify the presence of somatic mutations, the genomic portions of sequencing reads flanking each different IS were analyzed with VarScan2. The accumulation rates of mutations have been evaluated by our new Mutation Index (MI) which normalizes the number of mutations by clones and coverage. Considering that a large portion of IS has been discarded since not covered by a minimum number of 5 unique reads (genomes), the remaining number of IS contained >90% of reads in each group. The MI increased over time in both LV.SF.LTR groups, with higher values for the Cdkn2a-/-. On the other hand, treatment with SIN.LV.PGK resulted in lower MI in both groups compared to LV.SF.LTR groups, reflecting the higher clonal composition of the cells treated with the SIN.LV.PGK and the phenomenon of insertional mutagenesis in the LV.SF.LTR. Moreover, the higher MI values of the SIN.LV.PGK Cdkn2a-/- group compared with the WT group proved the induction of DNA fragility. Our results showed that the analysis of the accumulation of somatic mutations at single clone unraveled HSC proliferation stress in vivo, combining for the first time the analysis of acquired mutations with IS. We are now applying our model to different clinical trials, and studying HSCs sub- clonal trees by symmetric divisions, previously indistinguishable by IS only. Our study will open the doors to in vivo long-term non-invasive studies of HSC stability in patients

    Pd@TiO2/carbon nanohorn electrocatalysts: reversible CO2 hydrogenation to formic acid

    Get PDF
    Direct conversion of carbon dioxide to formic acid at thermodynamic equilibrium is an advantage of enzymatic catalysis, hardly replicated by synthetic analogs, but of high priority for carbon-neutral energy schemes. The bio-mimetic potential of totally inorganic Pd@TiO2 nanoparticles is envisioned herein in combination with Single Walled Carbon NanoHorns (SWCNHs). The high surface nano-carbon entanglement templates a wide distribution of \u201chard-soft\u201d bimetallic sites where the small Pd nanoparticles (1.5 nm) are shielded within the TiO2 phase (Pd@TiO2), while being electrically wired to the electrode by the nanocarbon support. This hybrid electrocatalyst activates CO2 reduction to formic acid at near zero overpotential in the aqueous phase (onset potential at E < 120.05 V vs. RHE, pH = 7.4), while being able to evolve hydrogen via sequential formic acid dehydrogenation. The net result hints at a unique CO2 \u201ccircular catalysis\u201d where formic acid versus H2 selectivity is addressable by flow-reactor technology

    Stepwise photoassisted decomposition of carbohydrates to H2

    Get PDF
    Biomass reforming by harvesting solar energy can provide green hydrogen. Current biomass photoreforming provides H2 erratically and in limited yield although efficiently, owing to intermittent features of solar light and incomplete degradation of biomass C-C bonds. Here, we detour the flaws by prioritizing conversion of carbohydrates to liquid hydrogen carriers (LHCs, consisting of HCOOH and HCHO), appropriate for transportation. Subsequently, the LHCs are fully decomposed, releasing only H-2 and CO2. This stepwise process enables complete scission of carbohydrate C-C bonds, affording 44 g of H-2 per kg of glucose thereof. Intermittent solar light provides the photoenergy and heat to split glucose car-bons to produce LHCs (2.5 mmol h(-1)) in a flow apparatus. This work demonstrates hydrogen production and storage by empha-sizing the complete scission of biomass C-C bonds
    • …
    corecore