12,783 research outputs found

    Velocity field distributions due to ideal line vortices

    Get PDF
    We evaluate numerically the velocity field distributions produced by a bounded, two-dimensional fluid model consisting of a collection of parallel ideal line vortices. We sample at many spatial points inside a rigid circular boundary. We focus on ``nearest neighbor'' contributions that result from vortices that fall (randomly) very close to the spatial points where the velocity is being sampled. We confirm that these events lead to a non-Gaussian high-velocity ``tail'' on an otherwise Gaussian distribution function for the Eulerian velocity field. We also investigate the behavior of distributions that do not have equilibrium mean-field probability distributions that are uniform inside the circle, but instead correspond to both higher and lower mean-field energies than those associated with the uniform vorticity distribution. We find substantial differences between these and the uniform case.Comment: 21 pages, 9 figures. To be published in Physical Review E (http://pre.aps.org/) in May 200

    A numerical study of the alpha model for two-dimensional magnetohydrodynamic turbulent flows

    Full text link
    We explore some consequences of the ``alpha model,'' also called the ``Lagrangian-averaged'' model, for two-dimensional incompressible magnetohydrodynamic (MHD) turbulence. This model is an extension of the smoothing procedure in fluid dynamics which filters velocity fields locally while leaving their associated vorticities unsmoothed, and has proved useful for high Reynolds number turbulence computations. We consider several known effects (selective decay, dynamic alignment, inverse cascades, and the probability distribution functions of fluctuating turbulent quantities) in magnetofluid turbulence and compare the results of numerical solutions of the primitive MHD equations with their alpha-model counterparts' performance for the same flows, in regimes where available resolution is adequate to explore both. The hope is to justify the use of the alpha model in regimes that lie outside currently available resolution, as will be the case in particular in three-dimensional geometry or for magnetic Prandtl numbers differing significantly from unity. We focus our investigation, using direct numerical simulations with a standard and fully parallelized pseudo-spectral method and periodic boundary conditions in two space dimensions, on the role that such a modeling of the small scales using the Lagrangian-averaged framework plays in the large-scale dynamics of MHD turbulence. Several flows are examined, and for all of them one can conclude that the statistical properties of the large-scale spectra are recovered, whereas small-scale detailed phase information (such as e.g. the location of structures) is lost.Comment: 22 pages, 20 figure

    Small scale structures in three-dimensional magnetohydrodynamic turbulence

    Get PDF
    We investigate using direct numerical simulations with grids up to 1536^3 points, the rate at which small scales develop in a decaying three-dimensional MHD flow both for deterministic and random initial conditions. Parallel current and vorticity sheets form at the same spatial locations, and further destabilize and fold or roll-up after an initial exponential phase. At high Reynolds numbers, a self-similar evolution of the current and vorticity maxima is found, in which they grow as a cubic power of time; the flow then reaches a finite dissipation rate independent of Reynolds number.Comment: 4 pages, 3 figure

    Testing Seed Corn

    Get PDF
    Testing every ear of seed corn will cost about 5 to 10 cents per acre, and may mean 5 to 10 bushels per acre increased yield. Do it now before the rush of farm work. In many parts of the state not one-half the seed corn will grow. Reports from Farmers\u27 Institutes in various sections indicate that the vitality is very low

    Maternal smoking during pregnancy and appetite control in offspring

    Get PDF
    Aims: Intrauterine exposure to tobacco smoke products has been associated with long-term neurobehavioral effects. Modified appetite control might explain the recently observed association between maternal smoking during pregnancy and obesity in offspring. Methods: Some 10,557 British adults aged 42 years born between 3-9 March 1958 were followed up in a birth cohort study (NCDS). The main outcome measure was self-reported poor appetite at age 42 years and main exposure was maternal smoking during pregnancy. Results: The proportion of offspring with poor appetite increased with maternal smoking during pregnancy: nonsmoking 4.5%; (4.0% - 5.0%), medium smoking 5.6%; (4.5 % - 6.8 %), variable smoking 6.8 %; (4.9 % - 9.1 %) and heavy smoking 7.7 %; (6.3 % - 9.4 %). The unadjusted odds ratios for maternal smoking during pregnancy (ever/never) and poor appetite is 1.49 (1.25 - 1.77) and after adjustment for BMI at 42 years and other potential confounding factors it is 1.22 (1.07 - 1.48). Conclusions: Offspring of mothers who smoked during pregnancy were more likely to report a poor appetite independent of a number of potential confounding factors. Although not in the expected direction, the results suggest maternal smoking during pregnancy may influence appetite perception through a developmental influence or through confounding by social factors

    Lumped mass modelling for the dynamic analysis of aircraft structures

    Get PDF
    Aircraft structures may be modelled by lumping the masses at particular strategic points and the flexibility or stiffness of the structure is obtained with reference to these points. Equivalent moments of inertia for the section at these positions are determined. The lumped masses are calculated based on the assumption that each point will represent the mass spread on one half of the space on each side. Then these parameters are used in the differential equation of motion and the eigen characteristics are determined. A comparison is made with results obtained by other established methods. The lumped mass approach in the dynamic analysis of complicated structures provides an easier means of predicting the dynamic characteristics of these structures. It involves less computer time and avoids computational errors that are inherent in the numerical solution of complicated systems

    Directional characteristics of lunar thermal emission

    Get PDF
    Directional characteristics and brightness temperatures of thermal lunar emissio

    The asymptotic quasi-stationary states of the two-dimensional magnetically confined plasma and of the planetary atmosphere

    Full text link
    We derive the differential equation governing the asymptotic quasi-stationary states of the two dimensional plasma immersed in a strong confining magnetic field and of the planetary atmosphere. These two systems are related by the property that there is an intrinsic constant length: the Larmor radius and respectively the Rossby radius and a condensate of the vorticity field in the unperturbed state related to the cyclotronic gyration and respectively to the Coriolis frequency. Although the closest physical model is the Charney-Hasegawa-Mima (CHM) equation, our model is more general and is related to the system consisting of a discrete set of point-like vortices interacting in plane by a short range potential. A field-theoretical formalism is developed for describing the continuous version of this system. The action functional can be written in the Bogomolnyi form (emphasizing the role of Self-Duality of the asymptotic states) but the minimum energy is no more topological and the asymptotic structures appear to be non-stationary, which is a major difference with respect to traditional topological vortex solutions. Versions of this field theory are discussed and we find arguments in favor of a particular form of the equation. We comment upon the significant difference between the CHM fluid/plasma and the Euler fluid and respectively the Abelian-Higgs vortex models.Comment: Latex 126 pages, 7 eps figures included. Discussion on various forms of the equatio

    Asymptotic defectiveness of manufacturing plants: an estimate based on process learning curves

    No full text
    The paper describes a method for a preliminary estimation of asymptotic defectiveness of a manufacturing plant based on the prediction of its learning curve estimated during a p-chart setting up. The proposed approach provides process managers with the possibility of estimating the asymptotic variability of the process and the period of revision of p-chart control limits. An application of the method is also provided
    corecore