86 research outputs found

    Concentration and patterns of PAHs along the salinity gradient of the Scheldt estuary

    Get PDF
    At MUMM a method was recently developed to determine Polycyclic Aromatic Hydrocarbons (PAHs) in surface waters, even with high particulate matter concentrations, as is the case for the Scheldt Estuary. The method is based on a solid phase extraction with Bakerbond Speedisk C18 cartridges (Baker Inc, Phillipsburg, NJ). After testing this method during a one-year international OSPAR pilot study, the same method was applied for water samples collected for the ENDIS-RISKS program during 2003. Total water concentrations varied between 10 ng/L and 1200 ng/L. Concentrations are tight linked to sources. Fluoranthene was found in the highest concentrations near Antwerp, while in Doel acenaphtylene seemed to be the most dominant compound. The patterns were generally dominated by the lower molecule weight PAHs. There is a clear gradient from Antwerp to the mouth of the estuary near Flushing. Concentrations and PAH patterns were further compared to previous results

    The INRAM project

    Get PDF

    The use of integrative passive samplers as a source of contaminant mixtures in ecotoxicological laboratory experiments

    Get PDF
    The INRAM project aims to introduce a new application of passive sampling devices in ecological toxicity testing. Conventional (laboratory) ecotoxicity studies are mostly performed by exposing test organisms to various (high) concentrations of a single test compound. This clearly does not reflect in situ conditions: i.e. exposure to mixtures of low levels of various micro-pollutants. In order to expose organisms to environmentally realistic contaminant mixtures, this study explored a novel use of integrative passive samplers. Firstly, the dynamics of the contaminant release from the samplers was studied in the presence of organic material, i.e. algal cells. This study showed that the samplers released the compounds into the test medium as expected. Constant concentrations were achieved in the test medium, but the target concentrations (based on the amount of compound spiked on the samplers) were not reached. Additional experiments will be carried out in order to improve the dynamics of contaminant release. Secondly, samplers were used to collect micro-pollutants from three Belgian coastal harbours and were used ‘inversely’ as a contaminant mixture source in laboratory toxicity assays with Crassostrea gigas larvae. Significant differences in normal development of the oyster larvae were observed between the three harbours. Within each harbour a pollution gradient was apparent. These results show that the targeted application of passive samplers is feasible. As these passive samplers also allow to determine the aqueous concentrations of otherwise (nearly) undetectable trace compounds, they could be a powerful new tool in environmental toxicology

    ENDIS-RISKS: endocrine disruption in the Scheldt estuary - a field study

    Get PDF
    ENDIS-RISKS, a multidisciplinary research project with five institutes, evaluates the distribution, exposure and effects of endocrine disruptors in the Scheldt Estuary. This estuary is known to be one of the most polluted estuaries in the world. Untreated domestic wastewater and effluents of the industrial areas of Ghent and Antwerp are to a large extent responsible for this pollution. During an intensive field study of four years, eight sampling campaigns were executed on seven sampling points along the Scheldt Estuary. A detailed analysis of the distribution of endocrine disrupting substances in the Scheldt Estuary was executed. Water, sediment, suspended solids and biota were analysed for seven groups of chemicals: estrogens, pesticides, organotins, polyaromatic components, polyaromatic hydrocarbons and phenols. Special attention was given to the estuarine mysid shrimp Neomysis integer. Its ecotoxicology and population characteristics were studied in detail. A selection of results of this field study is put forward. Water samples, tested in vitro for their potential to bind with estrogen, revealed more estrogenic activity in the more upstream stations. Concentrations of chlorotriazine herbicides in water samples, were higher in the upstream reaches compared to the downstream sites. Analyses of TBT in mysid shrimps revealed high concentrations (>2mg.kg-1 dry weight) which suggests a high bioaccumulation capacity. Population characteristics results of N. integer show that it has a broader distribution range, with a shift more upstream, in comparison with historical data (Mees et al., 1995). On the other hand, length distribution of developmental stages of N. integer along the estuary indicates some environmental stress, caused by the estuarine gradient or by pollutants. Some hypotheses will be put forward to explain these patterns

    Endocrine disruption in the Scheldt estuary distribution, exposure and effects (ENDIS-RISKS). Final report

    Get PDF
    ENDIS-RISKS is a multidisciplinary, research project conducted by five institutes. This project aimed to assess the distribution, exposure and effects of endocrine disruptors in the Scheldt estuary, with specific attention to invertebrates. The Scheldt estuary is known to be one of the most polluted estuaries in the world. The industrial areas of Ghent and Antwerp are to a large extent responsible for this pollution. To achieve these goals detailed knowledge of the distribution and long-term effects of these substances is needed. This information is crucial for the development of future-oriented policy measures at the national and European level. The project can be divided into four different research phases. In Phase I the occurance and distribution of endocrine disrupting substances in the Scheldt estuary was studied. Water, sediment, suspended solids and biota were sampled 3 times a year for a period of 4 years (2002-2006). In all these matrices, 7 groups of chemicals were analysed: estrogens, pesticides, phthalates, organotins, polyaromatic components (PCBs, PBDEs), polyaromatic hydrocarbons (PAHs) and phenols. All the analyzed chemicals are on the OSPAR list of priority chemicals or are indicated as endocrine disruptors on this list. The different water samples were also tested using in vitro assays to assess their potential to bind to the (human) estrogen and androgen receptor. Phase II evaluated the exposure of biota occuring in the Scheldt estuary to endocrine disrupting substances. Based on the results of the chemical analysis, priority substances were selected. Phase III studied the effects of endocrine disrupting substances occurring in the Scheldt estuary on resident mysid shrimp populations (laboratory and field studies). Substances of concern were selected and tested in the laboratory to evaluate their effects on the estuarine mysid Neomysis integer. In the context of this project, three new assays using invertebrate-specific endpoints were developed to examine the effect of endocrine disrupting chemicals (EDCs) on molting, embryogenesis and vitellogenesis of N. integer. Finally, in Phase IV laboratory and field results were used to perform a preliminary environmental risk assessment of endocrine disruptors in the Scheldt estuary. Samples were collected along the salinity gradiënt of the Scheldt estuary with the RV Belgica. Water samples were taken with Teflon-coated Go-Flo bottles (10L), sediment samples with Van Veen Grab, biota with a hyperbentic sledge, and suspended particulate matter (SPM) was continuously sampled with an Alfa Laval flow-through centrifuge. For the chemical analysis, protocols were developed to analyse estrogens, organotriazine herbicides, organochlorine pesticides, phtalates, organotins, PAHs, PCBs, and PBDEs in the different matrices: i.e. water, sediment, SPM and biota.Experimental studies were performed to analyse growth, molting, embryogenesis and vitellogenesis of N. integer. These studies were needed to develop ecotoxicological assays to evaluate EDCs on these physiological processes. To study growth of N. integer, organisms were individually transferrred in exposure solutions and molts were collected to measure the growth after each molting. To study embryogenesis, embryos were taking out of the marsupium and placed in multiwell plates. Each day survival, developmental stages and hatching was analysed. To study vitellogenesis, vitellin was isolated from eggs with gelfitration and polyclonal antibodies were developed (in rabbits). With the isolated vitellin and the antibodies an enzyme-linked immunosorbent assay (ELISA) was developed. Vitellin was quatified in ovigerous females exposed to test compound in the laboratory and in females collected from the different sampling sites of the Scheldt estuary. In addition to vitellin levels, energy allocation and testosterone metabolism was examined in field collected mysids. Finally, results from population stu

    Testosterone metabolism in Neomysis integer following exposure to benzo(a)pyrene

    Get PDF
    Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 144 (2006): 405-412, doi:10.1016/j.cbpb.2006.04.001.Cytochromes P450 (CYPs) are important enzymes involved in the regulation of hormone synthesis and in the detoxification and/or activation of xenobiotics. CYPs are found in virtually all organisms, from archae, and eubacteria to eukaryota. A number of endocrine disruptors are suspected of exerting their effects through disruption of normal CYP function. Consequently, alterations in steroid hormone metabolism through changes in CYP could provide an important tool to evaluate potential effects of endocrine disruptors. The aim of this study was to investigate the potential effects of the known CYP modulator, benzo(a)pyrene (B(a)P), on the testosterone metabolism in the invertebrate Neomysis integer (Crustacea; Mysidacea). N. integer were exposed for 96h to 0.43, 2.39, 28.83, 339.00 and 1682.86μg B(a)P L-1 and a solventcontrol, and subsequently their ability to metabolize testosterone was assessed. Identification and quantification of the produced phase I and phase II testosterone metabolites was performed using liquid chromatography coupled with multiple mass spectrometry (LC-MS2). Significant changes were observed in the overall ability of N. integer to metabolize testosterone when exposed to 2.39, 28.83, 339.00 and 1682.86μg B(a)P L-1 as compared to the control animals.This research was supported by a research grant of the Ghent University Research Fund (BOF, 011.072.02). Dr. Tim Verslycke was supported by a Postdoctoral Fellowship of the Belgian American Educational Foundation

    2021 Update of the International Council for Standardization in Haematology Recommendations for Laboratory Measurement of Direct Oral Anticoagulants

    Get PDF
    International audienceIn 2018, the International Council for Standardization in Haematology (ICSH) published a consensus document providing guidance for laboratories on measuring direct oral anticoagulants (DOACs). Since that publication, several significant changes related to DOACs have occurred, including the approval of a new DOAC by the Food and Drug Administration, betrixaban, and a specific DOAC reversal agent intended for use when the reversal of anticoagulation with apixaban or rivaroxaban is needed due to life-threatening or uncontrolled bleeding, andexanet alfa. In addition, this ICSH Working Party recognized areas where additional information was warranted, including patient population considerations and updates in point-of-care testing. The information in this manuscript supplements our previous ICSH DOAC laboratory guidance document. The recommendations provided are based on (1) information from peer-reviewed publications about laboratory measurement of DOACs, (2) contributing author's personal experience/expert opinion and (3) good laboratory practice
    corecore