344 research outputs found

    The safety and reliability of the S and A mechanism designed for the NASA/LSPE program

    Get PDF
    Under contract to the Manned Spacecraft Center, NASA/Houston, NOL developed a number of explosive charges for use in studying the surface of the moon during Apollo 17 activities. The charges were part of the Lunar Seismic Profiling Experiment (LSPE). When the Safety and Arming Device used in the previous ALSEP experiments was found unsuitable for use with the new explosive packages, NOL also designed the Safety and Arming Mechanism, and the safety and reliability tests conducted are described. The results of the test program indicate that the detonation transfer probability between the armed explosive components exceeds 0.9999, and is less than 0.0001 when the explosive components are in the safe position

    MeltMigrator : a MATLAB-based software for modeling three-dimensional melt migration and crustal thickness variations at mid-ocean ridges following a rules-based approach

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 18 (2017): 445–456, doi:10.1002/2016GC006686.MeltMigrator is a MATLAB®-based melt migration software developed to process three-dimensional mantle temperature and velocity data from user-supplied numerical models of mid-ocean ridges, calculate melt production and melt migration trajectories in the mantle, estimate melt flux along plate boundaries, and predict crustal thickness distribution on the seafloor. MeltMigrator is also capable of calculating compositional evolution depending on the choice of petrologic melting model. Programmed in modules, MeltMigrator is highly customizable and can be expanded to a wide range of applications. We have applied it to complex mid-ocean ridge model settings, including transform faults, oblique segments, ridge migration, asymmetrical spreading, background mantle flow, and ridge-plume interaction. In this technical report, we include an example application to a segmented mid-ocean ridge. MeltMigrator is available as a supplement to this paper, and it is also available from GitHub and the University of Maryland Geodynamics Group website.National Science Foundation Grant Number: OCE-0937277 and OCE-14582012017-07-2

    A probabilistic damage model of stress-induced permeability anisotropy during cataclastic flow

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): B10207, doi:10.1029/2006JB004456.A fundamental understanding of the effect of stress on permeability evolution is important for many fault mechanics and reservoir engineering problems. Recent laboratory measurements demonstrate that in the cataclastic flow regime, the stress-induced anisotropic reduction of permeability in porous rocks can be separated into 3 different stages. In the elastic regime (stage I), permeability and porosity reduction are solely controlled by the effective mean stress, with negligible permeability anisotropy. Stage II starts at the onset of shear-enhanced compaction, when a critical yield stress is attained. In stage II, the deviatoric stress exerts primary control over permeability and porosity evolution. The increase in deviatoric stress results in drastic permeability and porosity reduction and considerable permeability anisotropy. The transition from stage II to stage III takes place progressively during the development of pervasive cataclastic flow. In stage III, permeability and porosity reduction becomes gradual again, and permeability anisotropy diminishes. Microstructural observations on deformed samples using laser confocal microscopy reveal that stress-induced microcracking and pore collapse are the primary forms of damage during cataclastic flow. A probabilistic damage model is formulated to characterize the effects of stress on permeability and its anisotropy. In our model, the effects of both effective mean stress and differential stress on permeability evolution are calculated. By introducing stress sensitivity coefficients, we propose a first-order description of the dependence of permeability evolution on different loading paths. Built upon the micromechanisms of deformation in porous rocks, this unified model provides new insight into the coupling of stress and permeability.W.Z. was partially supported by the National Science Foundation under grants NSF-OCE0221436 and NSF-EAR 0510459, and the Department of Energy under grant #DEFGO200ER15058 (WHOI). LM was supported by the National Science Foundation under grant NSF-EAR0337678

    The recent history of the Galapagos Triple Junction preserved on the Pacific plate

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 371-372 (2013): 6-15, doi:10.1016/j.epsl.2013.04.018.At the Galapagos triple junction, the Cocos and Nazca plates are broken by a succession of transient rifts north and south of the Cocos-Nazca (C-N) Rift. Modeling has suggested that each rift initiated at the East Pacific Rise (EPR), its location controlled by the distance of the C-N Rift tip from the EPR. Evidence on the Pacific plate confirms that each transient rift formed a true RRR triple junction with the EPR and clarifies the history of the region. At ~1.5 Ma the triple junctions began jumping rapidly toward C-N Rift suggesting that the C-N Rift tip moved closer to the EPR. Pacific abyssal hills became broad and shallow indicating enhanced magma supply to the region. At ~1.4 Ma, the Galapagos microplate developed when extension became fixed on the southern transient rift to form the South scarp of the future Dietz rift basin. Lavas flooded the area and a Galapagos-Nazca magmatic spreading center initiated at the EPR. We suggest that a hotspot was approaching the southern triple junction from the west. The hotspot crossed to the Nazca plate ~1.25 Ma. Dietz seamount formed within the young spreading center, dikes intruded Dietz rift basin, and eruptions built volcanic ridges. Since ~0.8 Ma magmatic spreading has jumped northward twice, most recently to Dietz volcanic ridge. Amagmatic extension to the east has formed the large North scarp of Dietz rift basin. Northward jumping of the southern triple junction has maintained the microplate boundary close to the proposed hotspot.DKS was partially supported by NSF grant OCE-1028537, WZ by NSF grant EAR-1056317, and LM by NSF grant OCE-1060878

    COVID-19 Accelerated Cognitive Decline in Elderly Patients with Pre-Existing Dementia Followed up in an Outpatient Memory Care Facility

    Get PDF
    Introduction: Coronavirus disease 2019 (COVID-19) may affect the cognitive function and activities of daily living (ADL) of elderly patients. This study aimed to establish the COVID-19 effect on cognitive decline and the velocity of cognitive function and ADL changes in elderly patients with dementia followed up in an outpatient memory care facility. Methods: In total, 111 consecutive patients (age 82 ± 5 years, 32% males) with a baseline visit before infection were divided into those who had or did not have COVID-19. Cognitive decline was defined as a five-point loss of Mini-Mental State Examination (MMSE) score and ADL comprising basic and instrumental ADL indexes (BADL and IADL, respectively). COVID-19 effect on cognitive decline was weighted for confounding variables by the propensity score, whereas the effect on change in the MMSE score and ADL indexes was analyzed using multivariate mixed-effect linear regression. Results: COVID-19 occurred in 31 patients and a cognitive decline in 44. Cognitive decline was about three and a half times more frequent in patients who had COVID-19 (weighted hazard ratio 3.56, 95% confidence interval 1.50–8.59, p = 0.004). The MMSE score lowered on average by 1.7 points/year, independently of COVID-19, but it lowered twice faster in those who had COVID-19 (3.3 vs. 1.7 points/year, respectively, p < 0.050). BADL and IADL indexes lowered on average less than 1 point/year, independently of COVID-19 occurrence. Patients who had COVID-19 had a higher incidence of new institutionalization than those who did not have the disease (45% versus 20%, p = 0.016, respectively). Conclusions: COVID-19 had a significant impact on cognitive decline and accelerated MMSE reduction in elderly patients with dementia

    Experimental evidence for melt partitioning between olivine and orthopyroxene in partially molten harzburgite

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 121 (2016): 5776–5793, doi:10.1002/2016JB013122.Observations of dunite channels in ophiolites and uranium series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. We present experimental evidence that spatial variations in mineralogy can also focus melt on the grain scale. This lithologic melt partitioning, which results from differences in the interfacial energies associated with olivine-melt and orthopyroxene-melt boundaries, may complement other melt focusing mechanisms in the upper mantle such as mechanical shear and pyroxene dissolution. We document here lithologic melt partitioning in olivine-/orthopyroxene-basaltic melt samples containing nominal olivine to orthopyroxene ratio of 3 to 2 and melt fractions of 0.02 to 0.20. Experimental samples were imaged using synchrotron-based X-ray microcomputed tomography at a resolution of 700 nm per voxel. By analyzing the local melt fraction distributions associated with olivine and orthopyroxene grains in each sample, we found that the melt partitioning coefficient, i.e., the ratio of melt fraction around olivine to that around orthopyroxene grains, varies between 1.1 and 1.6. The permeability and electrical conductivity of our digital samples were estimated using numerical models and compared to those of samples containing only olivine and basaltic melt. Our results suggest that lithologic melt partitioning and preferential localization of melt around olivine grains might play a role in melt focusing, potentially enhancing average melt ascent velocities.National Science Foundation Grant Numbers: 1250338, 1551300; Basic Energy Sciences Grant Number: DEFG0207ER15916; Advanced Photon Source Grant Number: DE-AC02-06CH113572017-02-2

    The Paths to Choreography Extraction

    Full text link
    Choreographies are global descriptions of interactions among concurrent components, most notably used in the settings of verification (e.g., Multiparty Session Types) and synthesis of correct-by-construction software (Choreographic Programming). They require a top-down approach: programmers first write choreographies, and then use them to verify or synthesize their programs. However, most existing software does not come with choreographies yet, which prevents their application. To attack this problem, we propose a novel methodology (called choreography extraction) that, given a set of programs or protocol specifications, automatically constructs a choreography that describes their behavior. The key to our extraction is identifying a set of paths in a graph that represents the symbolic execution of the programs of interest. Our method improves on previous work in several directions: we can now deal with programs that are equipped with a state and internal computation capabilities; time complexity is dramatically better; we capture programs that are correct but not necessarily synchronizable, i.e., they work because they exploit asynchronous communication

    Controls on melt migration and extraction at the ultraslow Southwest Indian Ridge 10°–16°E

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): B10102, doi:10.1029/2011JB008259.Crustal thickness variations at the ultraslow spreading 10–16°E region of the Southwest Indian Ridge are used to constrain melt migration processes. In the study area, ridge morphology correlates with the obliquity of the ridge axis with respect to the spreading direction. A long oblique “supersegment”, nearly devoid of magmatism, is flanked at either end by robust magmatic centers (Joseph Mayes Seamount and Narrowgate segment) of much lesser obliquity. Plate-driven mantle flow and temperature structure are calculated in 3-D based on the observed ridge segmentation. Melt extraction is assumed to occur in three steps: (1) vertical migration out of the melting region, (2) focusing along an inclined permeability barrier, and (3) extraction when the melt enters a region shallower than ∼35 km within 5 km of the ridge axis. No crust is predicted in our model along the oblique supersegment. The formation of Joseph Mayes Seamount is consistent with an on-axis melt anomaly induced by the local orthogonal spreading. The crustal thickness anomaly at Narrowgate results from melt extracted at a tectonic damage zone as it travels along the axis toward regions of lesser obliquity. Orthogonal spreading enhances the Narrowgate crustal thickness anomaly but is not necessary for it. The lack of a residual mantle Bouguer gravity high along the oblique supersegment can be explained by deep serpentization of the upper mantle permissible by the thermal structure of this ridge segment. Buoyancy-driven upwelling and/or mantle heterogeneities are not required to explain the extreme focusing of melt in the study area.This work was supported by grants OCE‐ 0623188 and OCE‐0937277 from the National Science Foundation

    Equivalence-Invariant Algebraic Provenance for Hyperplane Update Queries

    Get PDF
    The algebraic approach for provenance tracking, originating in the semiring model of Green et. al, has proven useful as an abstract way of handling metadata. Commutative Semirings were shown to be the "correct" algebraic structure for Union of Conjunctive Queries, in the sense that its use allows provenance to be invariant under certain expected query equivalence axioms. In this paper we present the first (to our knowledge) algebraic provenance model, for a fragment of update queries, that is invariant under set equivalence. The fragment that we focus on is that of hyperplane queries, previously studied in multiple lines of work. Our algebraic provenance structure and corresponding provenance-aware semantics are based on the sound and complete axiomatization of Karabeg and Vianu. We demonstrate that our construction can guide the design of concrete provenance model instances for different applications. We further study the efficient generation and storage of provenance for hyperplane update queries. We show that a naive algorithm can lead to an exponentially large provenance expression, but remedy this by presenting a normal form which we show may be efficiently computed alongside query evaluation. We experimentally study the performance of our solution and demonstrate its scalability and usefulness, and in particular the effectiveness of our normal form representation

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types
    corecore