5,287 research outputs found

    SU(3)_LxU(1)_N Model for Right-Handed Neutrino Neutral Currents

    Full text link
    A model based on the \mbox{SU(3)}_L\otimes \mbox{U(1)}_N gauge group, in which neutrinos have right-handed neutral currents is considered. We argue that in order to have a result consistent with low-energy one, the right-handed neutrino component must be treated as correction instead of an equivalent spin state.Comment: 6 pages, Latex, no figures, Accepted for publication in Phys. Rev.

    Forward-backward equations for nonlinear propagation in axially-invariant optical systems

    Full text link
    We present a novel general framework to deal with forward and backward components of the electromagnetic field in axially-invariant nonlinear optical systems, which include those having any type of linear or nonlinear transverse inhomogeneities. With a minimum amount of approximations, we obtain a system of two first-order equations for forward and backward components explicitly showing the nonlinear couplings among them. The modal approach used allows for an effective reduction of the dimensionality of the original problem from 3+1 (three spatial dimensions plus one time dimension) to 1+1 (one spatial dimension plus one frequency dimension). The new equations can be written in a spinor Dirac-like form, out of which conserved quantities can be calculated in an elegant manner. Finally, these new equations inherently incorporate spatio-temporal couplings, so that they can be easily particularized to deal with purely temporal or purely spatial effects. Nonlinear forward pulse propagation and non-paraxial evolution of spatial structures are analyzed as examples.Comment: 11 page

    Particle dispersion processes in two-dimensional turbulence: a comparison with 2-D kinematic simulation.

    Get PDF
    International audienceWe study numerically the comparison between Lagrangian experiments on turbulent particle dispersion in 2-D turbulent flows performed, on the one hand, on the basis of direct numerical simulations (DNS) and, on the other hand, using kinematic simulations (KS). Eulerian space-time structure of both DNS and KS dynamics are not comparable, mostly due to the absence of strong coherent vortices and advection processes in the KS fields. The comparison allows to refine past studies about the contribution of non-homogeneous space-time 2-D Eulerian structure on the turbulent absolute and relative particle dispersion processes. We particularly focus our discussion on the Richardson's regime for relative dispersion

    Remark on the vectorlike nature of the electromagnetism and the electric charge quantization

    Full text link
    In this work we study the structure of the electromagnetic interactions and the electric charge quantization in gauge theories of electroweak interactions based on semi-simple groups. We show that in the standard model of the electroweak interactions the structure of the electromagnetic interactions is strongly correlated to the quantization pattern of the electric charges. We examine these two questions also in all possible chiral bilepton gauge models of the electroweak interactions. In all they we can explain the vectorlike nature of the electromagnetic interactions and the electric charge quantization together demanding nonvanishing fermion masses and the anomaly cancellations.Comment: 17 pages, latex, no figure

    Dual Interpretations of Seiberg-Witten and Dijkgraaf-Vafa curves

    Full text link
    We give dual interpretations of Seiberg-Witten and Dijkgraaf-Vafa (or matrix model) curves in n=1 supersymmetric U(N) gauge theory. This duality interchanges the rank of the gauge group with the degree of the superpotential; moreover, the constraint of having at most log-normalizable deformations of the geometry is mapped to a constraint in the number of flavors N_f < N in the dual theory.Comment: Latex2e, 22 pages, 2 figure

    Diffstar: A Fully Parametric Physical Model for Galaxy Assembly History

    Full text link
    We present Diffstar, a smooth parametric model for the in-situ star formation history (SFH) of galaxies. Diffstar is distinct from conventional SFH models that are used to interpret the spectral energy distribution (SED) of an observed galaxy, because our model is parametrized directly in terms of basic features of galaxy formation physics. The Diffstar model assumes that star formation is fueled by the accretion of gas into the dark matter halo of the galaxy, and at the foundation of Diffstar is a parametric model for halo mass assembly, Diffmah. We include parametrized ingredients for the fraction of accreted gas that is eventually transformed into stars, Ï”ms,\epsilon_{\rm ms}, and for the timescale over which this transformation occurs, τcons;\tau_{\rm cons}; some galaxies in Diffstar experience a quenching event at time tq,t_{\rm q}, and may subsequently experience rejuvenated star formation. We fit the SFHs of galaxies predicted by the IllustrisTNG (TNG) and UniverseMachine (UM) simulations with the Diffstar parameterization, and show that our model is sufficiently flexible to describe the average stellar mass histories of galaxies in both simulations with an accuracy of ∌0.1\sim0.1 dex across most of cosmic time. We use Diffstar to compare TNG to UM in common physical terms, finding that: (i) star formation in UM is less efficient and burstier relative to TNG; (ii) galaxies in UM have longer gas consumption timescales, τcons\tau_{\rm cons}, relative to TNG; (iii) rejuvenated star formation is ubiquitous in UM, whereas quenched TNG galaxies rarely experience sustained rejuvenation; and (iv) in both simulations, the distributions of Ï”ms\epsilon_{\rm ms}, τcons\tau_{\rm cons}, and tqt_{\rm q} share a common characteristic dependence upon halo mass, and present significant correlations with halo assembly history. [Abridged]Comment: 26 pages, 21 figure

    Fixed points and vacuum energy of dynamically broken gauge theories

    Get PDF
    We show that if a gauge theory with dynamical symmetry breaking has non-trivial fixed points, they will correspond to extrema of the vacuum energy. This relationship provides a different method to determine fixed points.Comment: 17 pages, uuencoded latex file, 3 figures, uses epsf and epsfig. Submitted to Mod. Phys. Lett.

    Entropy of the Nordic electricity market: anomalous scaling, spikes, and mean-reversion

    Get PDF
    The electricity market is a very peculiar market due to the large variety of phenomena that can affect the spot price. However, this market still shows many typical features of other speculative (commodity) markets like, for instance, data clustering and mean reversion. We apply the diffusion entropy analysis (DEA) to the Nordic spot electricity market (Nord Pool). We study the waiting time statistics between consecutive spot price spikes and find it to show anomalous scaling characterized by a decaying power-law. The exponent observed in data follows a quite robust relationship with the one implied by the DEA analysis. We also in terms of the DEA revisit topics like clustering, mean-reversion and periodicities. We finally propose a GARCH inspired model but for the price itself. Models in the context of stochastic volatility processes appear under this scope to have a feasible description.Comment: 16 pages, 7 figure

    AVOCADO: A Virtual Observatory Census to Address Dwarfs Origins

    Full text link
    Dwarf galaxies are by far the most abundant of all galaxy types, yet their properties are still poorly understood -especially due to the observational challenge that their intrinsic faintness represents. AVOCADO aims at establishing firm conclusions on their formation and evolution by constructing a homogeneous, multiwavelength dataset for a statistically significant sample of several thousand nearby dwarfs (-18 < Mi < -14). Using public data and Virtual Observatory tools, we have built GALEX+SDSS+2MASS spectral energy distributions that are fitted by a library of single stellar population models. Star formation rates, stellar masses, ages and metallicities are further complemented with structural parameters that can be used to classify them morphologically. This unique dataset, coupled with a detailed characterization of each dwar's environment, allows for a fully comprehensive investigation of their origins and to track the (potential) evolutionary paths between the different dwarf types.Comment: 4 pages, 1 figure. To appear in the proceedings of IAU Symposium 277, "Tracing the Ancestry of Galaxies on the Land of our Ancestors", Carignan, Freeman, and Combes, ed

    Localized starbursts in dwarf galaxies produced by impact of low metallicity cosmic gas clouds

    Full text link
    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter haloes. Although these predictions are unambiguous, the observational support has been indirect so far. Here we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local Universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias (GTC) optical spectra of ten XMPs show that the galaxy hosts have metallicities around 60 % solar on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6 % solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties.Comment: Accepted for publication in ApJ
    • 

    corecore