7 research outputs found

    Systemically Administered TLR7/8 Agonist and Antigen-Conjugated Nanogels Govern Immune Responses against Tumors

    Get PDF
    [Image: see text] The generation of specific humoral and cellular immune responses plays a pivotal role in the development of effective vaccines against tumors. Especially the presence of antigen-specific, cytotoxic T cells influences the outcome of therapeutic cancer vaccinations. Different strategies, ranging from delivering antigen-encoding mRNAs to peptides or full antigens, are accessible but often suffer from insufficient immunogenicity and require immune-boosting adjuvants as well as carrier platforms to ensure stability and adequate retention. Here, we introduce a pH-responsive nanogel platform as a two-component antitumor vaccine that is safe for intravenous application and elicits robust immune responses in vitro and in vivo. The underlying chemical design allows for straightforward covalent attachment of a model antigen (ovalbumin) and an immune adjuvant (imidazoquinoline-type TLR7/8 agonist) onto the same nanocarrier system. In addition to eliciting antigen-specific T and B cell responses that outperform mixtures of individual components, our two-component nanovaccine leads in prophylactic and therapeutic studies to an antigen-specific growth reduction of different tumors expressing ovalbumin intracellularly or on their surface. Regarding the versatile opportunities for functionalization, our nanogels are promising for the development of highly customized and potent nanovaccines

    Density of conjugated antibody determines the extent of Fc receptor dependent capture of nanoparticles by liver sinusoidal endothelial cells

    Get PDF
    Despite considerable progress in the design of multifunctionalized nanoparticles (NPs) that selectively target specific cell types, their systemic application often results in unwanted liver accumulation. The exact mechanisms for this general observation are still unclear. Here we asked whether the number of cell-targeting antibodies per NP determines the extent of NP liver accumulation and also addressed the mechanisms by which antibody-coated NPs are retained in the liver. We used polysarcosine-based peptobrushes (PBs), which in an unmodified form remain in the circulation for >24 h due to the absence of a protein corona formation and low unspecific cell binding, and conjugated them with specific average numbers (2, 6, and 12) of antibodies specific for the dendritic cell (DC) surface receptor, DEC205. We assessed the time-dependent biodistribution of PB-antibody conjugates by in vivo imaging and flow cytometry. We observed that PB-antibody conjugates were trapped in the liver and that the extent of liver accumulation strongly increased with the number of attached antibodies. PB-antibody conjugates were selectively captured in the liver via Fc receptors (FcR) on liver sinusoidal endothelial cells, since systemic administration of FcR-blocking agents or the use of F(ab')2 fragments prevented liver accumulation. Cumulatively, our study demonstrates that liver endothelial cells play a yet scarcely acknowledged role in liver entrapment of antibody-coated NPs and that low antibody numbers on NPs and the use of F(ab')2 antibody fragments are both sufficient for cell type-specific targeting of secondary lymphoid organs and necessary to minimize unwanted liver accumulation.Drug Delivery Technolog

    The Wnt/beta-Catenin Pathway Attenuates Experimental Allergic Airway Disease

    No full text
    Pathogenesis and treatment of chronic pulmonary disease

    Inhibition of murine IgE and immediate cutaneous hypersensitivity responses to ovalbumin by the immunomodulatory agent leflunomide

    No full text
    Leflunomide has been identified as an immunoregulatory and anti-inflammatory compound. Allergic disease is characterized by elevated serum IgE levels, production of allergen-specific IgE and the release of inflammatory mediators from mast cells and granulocytes. Here we demonstrate, using an in vivo murine model, the ability of leflunomide to down-regulate levels of total and allergen-specific serum IgE production. Mice receiving leflunomide (45 mg/kg) orally at the time of primary immunization with ovalbumin adsorbed to aluminium hydroxide adjuvant, showed a reduction in total serum IgE levels of 95%, 41% and 32% following primary, secondary and tertiary immunizations, respectively (P < 0.05). When leflunomide was administered both at the time of primary and subsequent immunizations, reductions in total and specific serum IgE levels of > 80% and > 38%, respectively, were observed (P < 0.05). Administration of leflunomide to mice which had already developed an IgE response resulted in reductions in total and specific serum IgE levels of > 80% and > 45%, respectively (P < 0.05). Following leflunomide treatment, animals failed to develop immediate cutaneous hypersensitivity responses when challenged intradermally with allergen. Down-regulation of immunoglobulin production was not restricted to IgE, since levels of allergen-specific IgG1 and IgG2a in serum were also reduced. The finding of significant reductions in total and allergen-specific IgM suggests that the mechanism of action does not involve selective inhibition of immunoglobulin class switching. A loss in production of the T helper cell-derived B cell differentiation factor IL-5 may account for the reduction in immunoglobulin levels. In adoptive transfer experiments leflunomide did not induce tolerance in allergen-reactive Th2 populations, contrary to animal disease models of transplantation and autoimmunity, where leflunomide was shown to induce tolerance in the effector T cell population

    &beta;2 Integrins on Dendritic Cells Modulate Cytokine Signaling and Inflammation-Associated Gene Expression, and Are Required for Induction of Autoimmune Encephalomyelitis

    No full text
    Heterodimeric &beta;2 integrin surface receptors (CD11a-d/CD18) are specifically expressed by leukocytes that contribute to pathogen uptake, cell migration, immunological synapse formation and cell signaling. In humans, the loss of CD18 expression results in leukocyte adhesion deficiency syndrome (LAD-)1, largely characterized by recurrent severe infections. All available mouse models display the constitutive and ubiquitous knockout of either &alpha; or the common &beta;2 (CD18) subunit, which hampers the analysis of the cell type-specific role of &beta;2 integrins in vivo. To overcome this limitation, we generated a CD18 gene floxed mouse strain. Offspring generated from crossing with CD11c-Cre mice displayed the efficient knockdown of &beta;2 integrins, specifically in dendritic cells (DCs). Stimulated &beta;2-integrin-deficient splenic DCs showed enhanced cytokine production and the concomitantly elevated activity of signal transducers and activators of transcription (STAT) 1, 3 and 5, as well as the impaired expression of suppressor of cytokine signaling (SOCS) 2&ndash;6 as assessed in bone marrow-derived (BM) DCs. Paradoxically, these BMDCs also showed the attenuated expression of genes involved in inflammatory signaling. In line, in experimental autoimmune encephalomyelitis mice with a conditional DC-specific &beta;2 integrin knockdown presented with a delayed onset and milder course of disease, associated with lower frequencies of T helper cell populations (Th)1/Th17 in the inflamed spinal cord. Altogether, our mouse model may prove to be a valuable tool to study the leukocyte-specific functions of &beta;2 integrins in vivo
    corecore