290 research outputs found

    Thermally induced behavior of the K-exchanged erionite. A further step in understanding the structural modifications of the erionite group upon heating

    Get PDF
    Fibrous erionite is a naturally occurring zeolite considered to be highly carcinogenic upon inhalation, even more than crocidolite. Since no iron is typically present in erionite, its toxicity has been attributed to ion-exchanged Fe participating in Fenton chemistry. Recently, a study aimed at investigating possible fiber inactivation routes surprisingly showed that, despite having completely occluded all available pores with K ions, the erionite-Na sample preserved the property to upload Fe (II) within the structure. In this work, the thermal behavior of the K-exchanged erionite-Na was investigated by TG/ DSC and in situ XRPD analyses in order to provide relevant information for modeling the thermally induced behavior of the erionite group. Rietveld refinement results evidenced a general trend of cell parameters and volume with temperature similar to that observed for erionite-K from Rome (Oregon, USA). However, the dependence of Tdehydrand Tbreakfrom Si/Si+Al ratio observed in zeolites (high Si content favours a lower Tdehydrand a higher Tbreak) is not observed, possibly due to the effect of the relevant amount of large K ions dispersed within the erionite cage, acting as reinforcing blocks for the framework. Heating produces a progressive emptying of the Ca sites, common effect previously observed in erionite samples showing different chemistry. In addition, K1 s.s. remains unchanged evidencing the absence of any “internal ion exchange” process, whereas s.s. at K2 increases in the range 438-573 K and then slowly decreases in the range 700-1218 K. Both Rietveld and DSC data suggest the motion of K ions from OW sites toward the walls of the erionite cavity during dehydration

    Fully-digital low-frequency lock-in amplifier for photoluminescence measurements

    Get PDF
    Lock-in amplifiers, used in several experimental physics applications, are instruments performing quadrature demodulation, which is useful when signals are affected by much noise. Generally, commercially-available lock-in amplifiers are very accurate, but expensive, especially if their operating range includes radiofrequencies. In many applications, high precision is not necessary for the measurements, but it is preferable to have low-cost, low-weight, compactness and a user-friendly graphical unit interface. In this paper, we describe a new fully-digital low-frequency lock-in amplifier developed at ENEA C.R. Frascati Laboratories for photoluminescence experiments based on an innovative low-cost architecture and processing algorithms. The hardware, firmware and software developed for the whole photoluminescence measurement set-up is presented. The present lock-in was first characterized with synthetic electrical sine wave signals and white noise. A dynamic reserve of 43 dB and a noise figure in the range of 25–44 dB were estimated. These results show compatibility with several measurement applications, such as photoluminescence, and the adequacy of the resolutions with respect to the hardware costs. Finally, preliminary results of photoluminescence measurements are presented

    VUV-Vis optical characterization of Tetraphenyl-butadiene films on glass and specular reflector substrates from room to liquid Argon temperature

    Full text link
    The use of efficient wavelength-shifters from the vacuum-ultraviolet to the photosensor's range of sensitivity is a key feature in detectors for Dark Matter search and neutrino physics based on liquid argon scintillation detection. Thin film of Tetraphenyl-butadiene (TPB) deposited onto the surface delimiting the active volume of the detector and/or onto the photosensor optical window is the most common solution in current and planned experiments. Detector design and response can be evaluated and correctly simulated only when the properties of the optical system in use (TPB film + substrate) are fully understood. Characterization of the optical system requires specific, sometimes sophisticated optical methodologies. In this paper the main features of TPB coatings on different, commonly used substrates is reported, as a result of two independent campaigns of measurements at the specialized optical metrology labs of ENEA and University of Tor Vergata. Measured features include TPB emission spectra with lineshape and relative intensity variation recorded as a function of the film thickness and for the first time down to LAr temperature, as well as optical reflectance and transmittance spectra of the TPB coated substrates in the wavelength range of the TPB emission

    Surface and Bulk Modifications of Fibrous Erionite in Mimicked Gamble's Solution at Acidic pH

    Get PDF
    This study aimed at investigating both the surface and bulk modifications occurring on fibrous erionite during leaching in a mimicked Gamble's solution (MGS) at pH of 4.5 and T = 37 degrees C, up to one month of incubation. Samples were characterized by a multi-analytical approach: field-emission scanning electron microscopy (FE-SEM) was employed to investigate the morphological changes of both pristine and reacted fibres, inductively coupled plasma optical emission spectrometry (ICP-OES) was used to measure the concentration of the released cations; X-ray photoelectron spectroscopy (XPS) was exploited for highlighting possible modifications of surface chemistry; X-ray powder diffraction (XRPD) and high-resolution transmission electron microscopy (HR-TEM) were applied aiming to get information on the structural state of the fibres following the incubation. ICP results integrated with those obtained by both bulk- and surface-chemical characterization highlighted that erionite binds Na especially in the first 24 h of sample incubation in the MGS, following ion exchange with the extra framework cations, in particular Ca. Moreover, our new results show that the Na binding process caused structural modifications with the migration of Na toward the Ca2 site and redistribution of the cations within the erionite cage. TEM investigation pointed out that the interaction between erionite and MGS results in the formation of a new surface amorphous layer with an irregular lobate pattern on an earlier surface weathered layer. However, the silicate framework is not weakened by incubation in the MGS at acidic pH. In addition, on the basis of the Si release normalized to the mineral surface area, fibrous erionite resulted significantly more biodurable than amphibole asbestos. Notably, considering the primary role played by biodurability in inducing pathogenicity, this result certainly supports in vivo observations showing that erionite is much more tumorigenic than asbestos. Moreover, the ions released by erionite when immersed in MGS may trigger biological effects, such as those on lipid packing and membrane permeability. On this basis, we expect a regulatory definition that would provide protection from this carcinogenic fibre

    Surface and bulk modifications of amphibole asbestos in mimicked gamble's solution at acidic PH

    Get PDF
    This study aimed at investigating the surface modifications occurring on amphibole asbestos (crocidolite and tremolite) during leaching in a mimicked Gamble’s solution at pH of 4.5 and T = 37 Â°C, from 1 h up to 720 h. Results showed that the fibre dissolution starts with the release of cations prevalently allocated at the various M- and (eventually) A-sites of the amphibole structure (incongruent dissolution). The amount of released silicon, normalized to fibre surface area, highlighted a leaching faster for the crocidolite sample, about twenty times higher than that of tremolite. Besides, the fast alteration of crocidolite promotes the occurrence of Fe centres in proximity of the fibre surface, or possibly even exposed, particularly in the form of Fe(II), of which the bulk is enriched with respect to the oxidized surface. Conversely, for tremolite fibres the very slow fibre dissolution prevents the underlying cations of the bulk to be exposed on the mineral surface, and the iron oxidation, faster than the leaching process, significantly depletes the surface Fe(II) centres initially present. Results of this work may contribute to unravel possible correlations between surface properties of amphibole asbestos and its long-term toxicity

    Optical characterization of lithium fluoride thin-film imaging detectors for monochromatic hard X-rays

    Get PDF
    Lithium fluoride (LiF) crystals and thin films have been successfully investigated as X-ray imaging detectors based on optical reading of visible photoluminescence emitted by stable radiation-induced F2 and F+3 colour centres. In this work, the visible photoluminescence response of optically-transparent LiF film detectors of three different thicknesses, grown by thermal evaporation on Si(100) substrates and irradiated with monochromatic 7 keV X-rays at several doses in the range between 13 and 4.5 × 103 Gy, was carefully investigated by fluorescence optical microscopy. For all the film thicknesses, the photoluminescence response linearly depends on the irradiation dose in the investigated dose range. The lowest detected dose, delivered to the thinnest LiF film, only 0.5 μm thick, is estimated 13 Gy. Edge-enhancement imaging experiments, conducted by irradiating LiF film detectors at the same energy placing an Au mesh in front of them at a distance of 15 mm, allowed estimating a spatial resolution of (0.38 ± 0.05) μm, which is comparable to the microscope one. This very high spatial resolution in LiF film radiation detectors based on colour centres photoluminescence is combined with the availability of a wide field of view on large areas
    • …
    corecore