1,804 research outputs found

    COVERAGE ISSUES UNDER COMMERCIAL GENERAL LIABILITY AND DIRECTORS\u27 AND OFFICERS\u27 LIABILITY POLICIES

    Get PDF

    Artichoke biorefinery: From food to advanced technological applications

    Get PDF
    A sequential extraction process has been designed for valorizing globe artichoke plant residues and waste (heads, leaves, stalks, and roots left in the field) by means of green extraction techniques according to a biorefinery approach. We investigated two cascading extractions based on microwave-assisted extractions (MAE) and green solvents (water and ethanol) that have been optimized for varying temperature, solvent and extraction time. In the first step, phenols were extracted with yields that ranged between 6.94 mg g−1 dw (in leaves) and 3.28 mg g−1 dw (in roots), and a phenols productivity of 175.74 kg Ha−1. In the second step, inulin was extracted with impressive yields (42% dw), higher than other conventional inulin sources, corresponding to an inulin productivity of 4883.58 kg Ha−1. The remaining residues were found to be valuable feedstocks both for bioenergy production and green manure (back to the field), closing the loop according to the Circular Economy paradigm

    Tibial tuberosity derotation: a surgical procedure for realignment of the patellofemoral mechanism

    Get PDF
    We retrospectively reviewed the clinical outcomes of 22 patients (9 men and 13 women) aged 17–42 years, and affected with anterior knee pain. These patients underwent surgical derotation of the tibial tuberosity in the period between September 1992 and December 1993. We describe the details of this new surgical technique to correct a torsional abnormality that has perhaps been underestimated in the past, as a possible cause of anterior knee pain. Follow-up clinical and radiographic controls (average follow-up, 78 months; range 72–87 months) allowed us to document the efficacy of this new procedure as a treatment for anterior knee pain resistant to conservative therapy, in young patients with external hypertorsion of the proximal tibial metaphysis and without significant chondropathology

    Hearing dysfunction in a large family affected by dominant optic atrophy (OPA8-related DOA): A human model of hidden auditory neuropathy

    Get PDF
    Hidden auditory neuropathy is characterized by reduced performances in challenging auditory tasks with the preservation of hearing thresholds, resulting from diffuse loss of cochlear inner hair cell (IHC) synapses following primary degeneration of unmyelinated terminals of auditory fibers. We report the audiological and electrophysiological findings collected from 10 members (4 males, 6 females) of a large Italian family affected by dominant optic atrophy, associated with the OPA8 locus, who complained of difficulties in understanding speech in the presence of noise. The patients were pooled into two groups, one consisting of 4 young adults (19\u201350 years) with normal hearing thresholds, and the other made up of 6 patients of an older age (55\u201372 years) showing mild hearing loss. Speech perception scores were normal in the first group and decreased in the second. Otoacoustic emissions (OAEs) and cochlear microphonics (CMs) recordings were consistent with preservation of outer hair cell (OHC) function in all patients, whereas auditory brainstem responses (ABRs) showed attenuated amplitudes in the first group and severe abnormalities in the second. Middle ear acoustic reflexes had delayed peak latencies in all patients in comparison with normally hearing individuals. Transtympanic electrocochleography (ECochG) recordings in response to 0.1 ms clicks at intensities from 120 to 60 dB peak equivalent SPL showed a reduction in amplitude of both summating potential (SP) and compound action potential (CAP) together with delayed CAP peak latencies and prolonged CAP duration in all patients in comparison with a control group of 20 normally hearing individuals. These findings indicate that underlying the hearing impairment in OPA8 patients is hidden AN resulting from diffuse loss of IHCs synapses. At an early stage the functional alterations only consist of abnormalities of ABR and ECochG potentials with increased latencies of acoustic reflexes, whereas reduction in speech perception scores become apparent with progression of the disease. Central mechanisms increasing the cortical gain are likely to compensate for the reduction of cochlear input

    Difficult Biliary Stones: A Comprehensive Review of New and Old Lithotripsy Techniques

    Get PDF
    Biliary stones represent the most common indication for therapeutic endoscopic retrograde cholangiopancreatography. Many cases are successfully managed with biliary sphincterotomy and stone extraction with balloon or basket catheters. However, more complex conditions secondary to the specific features of stones, the biliary tract, or patient's needs could make the stone extraction with the standard techniques difficult. Traditionally, mechanical lithotripsy with baskets has been reported as a safe and effective technique to achieve stone clearance. More recently, the increasing use of endoscopic papillary large balloon dilation and the diffusion of single-operator cholangioscopy with laser or electrohydraulic lithotripsy have brought new, safe, and effective therapeutic possibilities to the management of such challenging cases. We here summarize the available evidence about the endoscopic management of difficult common bile duct stones and discuss current indications of different lithotripsy techniques

    Wurtzite nanowires strain control by DC electrical stimulation

    Get PDF
    Nanomechanics is a highly developed area of research, given the significant reported changes in material properties at the nanometer scale, requiring the development of new theories to explain the underlying mechanisms. Such theories must be based on measurements that are as accurate as possible, but unfortunately, conventional experimental techniques do not apply to such small components. Here we present a unique new method to control electro-mechanical forces on quasi −1D nanostructures through static electric fields with multiple ways of control of GaAs nanowires’ strain directly on the growth substrate

    Light-controlled directional liquid drop movement on TiO2 nanorods-based nanocomposite photopatterns.

    Get PDF
    Patterned polymeric coatings enriched with colloidal TiO(2) nanorods and prepared by photopolymerization are found to exhibit a remarkable increase in their water wettability when irradiated with UV laser light. The effect can be completely reversed using successive storage in vacuum and dark ambient environment. By exploiting the enhancement of the nanocomposites hydrophilicity upon UV irradiation, we prepare wettability gradients along the surfaces by irradiating adjacent surface areas with increasing time. The gradients are carefully designed to achieve directional movement of water drops along them, taking into account the hysteresis effect that opposes the movement as well as the change in the shape of the drop during its motion. The accomplishment of surface paths for liquid flow, along which the hydrophilicity gradually increases, opens the way to a vast number of potential applications in microfluidics

    Controlled Swapping of Nanocomposite Surface Wettability by Multilayer Photopolymerization

    Get PDF
    Single-layered photopolymerized nanocomposite films of polystyrene and TiO2 nanorods change their wetting characteristics from hydrophobic to hydrophilic when deposited on substrates with decreasing hydrophilicity. Interestingly, the addition of a second photopolymerized layer causes a swapping in the wettability, so that the final samples result converted from hydrophobic to hydrophilic or vice versa. The wettability characteristics continue to be swapped as the number of photopolymerized layers increases. In fact, odd-layered samples show the same wetting behavior as single-layered ones, while even-layered samples have the same surface characteristics as double-layered ones. Analytical surface studies demonstrate that all samples, independently of the number of layers, have similar low roughness, and that the wettability swap is due to the different concentration of the nanocomposites constituents on the samples surface. Particularly, the different interactions between the hydrophilic TiO2 nanorods and the underlying layer lead to different amounts of nanorods exposed on the nanocomposites surface. Moreover, due to the unique property of TiO2 to reversibly increase its wettability upon UV irradiation and subsequent storage, the wetting characteristics of the multilayered nanocomposites can be tuned in a reversible manner. In this way, a combination of substrate, number of photopolymerized layers, and external UV light stimulus can be used in order to precisely control the surface wettability properties of nanocomposite films, opening the way to a vast number of potential applications in microfluidics, protein assays, and cell growth
    • …
    corecore