17 research outputs found

    A trehalose biosynthetic enzyme doubles as an osmotic stress sensor to regulate bacterial morphogenesis

    Get PDF
    The dissacharide trehalose is an important intracellular osmoprotectant and the OtsA/B pathway is the principal pathway for trehalose biosynthesis in a wide range of bacterial species. Scaffolding proteins and other cytoskeletal elements play an essential role in morphogenetic processes in bacteria. Here we describe how OtsA, in addition to its role in trehalose biosynthesis, functions as an osmotic stress sensor to regulate cell morphology in Arthrobacter strain A3. In response to osmotic stress, this and other Arthrobacter species undergo a transition from bacillary to myceloid growth. An otsA null mutant exhibits constitutive myceloid growth. Osmotic stress leads to a depletion of trehalose-6-phosphate, the product of the OtsA enzyme, and experimental depletion of this metabolite also leads to constitutive myceloid growth independent of OtsA function. In vitro analyses indicate that OtsA can self-assemble into protein networks, promoted by trehalose-6-phosphate, a property that is not shared by the equivalent enzyme from E. coli, despite the latter's enzymatic activity when expressed in Arthrobacter. This, and the localization of the protein in non-stressed cells at the mid-cell and poles, indicates that OtsA from Arthrobacter likely functions as a cytoskeletal element regulating cell morphology. Recruiting a biosynthetic enzyme for this morphogenetic function represents an intriguing adaptation in bacteria that can survive in extreme environments

    Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our previously published reports have described an effective biocontrol agent named <it>Pseudomonas </it>sp. M18 as its 16S rDNA sequence and several regulator genes share homologous sequences with those of <it>P. aeruginosa</it>, but there are several unusual phenotypic features. This study aims to explore its strain specific genomic features and gene expression patterns at different temperatures.</p> <p>Results</p> <p>The complete M18 genome is composed of a single chromosome of 6,327,754 base pairs containing 5684 open reading frames. Seven genomic islands, including two novel prophages and five specific non-phage islands were identified besides the conserved <it>P. aeruginosa </it>core genome. Each prophage contains a putative chitinase coding gene, and the prophage II contains a <it>capB </it>gene encoding a putative cold stress protein. The non-phage genomic islands contain genes responsible for pyoluteorin biosynthesis, environmental substance degradation and type I and III restriction-modification systems. Compared with other <it>P. aeruginosa </it>strains, the fewest number (3) of insertion sequences and the most number (3) of clustered regularly interspaced short palindromic repeats in M18 genome may contribute to the relative genome stability. Although the M18 genome is most closely related to that of <it>P. aeruginosa </it>strain LESB58, the strain M18 is more susceptible to several antimicrobial agents and easier to be erased in a mouse acute lung infection model than the strain LESB58. The whole M18 transcriptomic analysis indicated that 10.6% of the expressed genes are temperature-dependent, with 22 genes up-regulated at 28°C in three non-phage genomic islands and one prophage but none at 37°C.</p> <p>Conclusions</p> <p>The <it>P. aeruginosa </it>strain M18 has evolved its specific genomic structures and temperature dependent expression patterns to meet the requirement of its fitness and competitiveness under selective pressures imposed on the strain in rhizosphere niche.</p

    Comparative analyses of the complete genome sequences of Pierce's disease and citrus variegated chlorosis strains of Xylella fastidiosa

    Get PDF
    Xylella fastidiosa is a xylem-dwelling, insect-transmitted, gamma-proteobacterium that causes diseases in many plants, including grapevine, citrus, periwinkle, almond, oleander, and coffee. X. fastidiosa has an unusually broad host range, has an extensive geographical distribution throughout the American continent, and induces diverse disease phenotypes. Previous molecular analyses indicated three distinct groups of X.fastidiosa isolates that were expected to be genetically divergent. Here we report the genome sequence of X. fastidiosa (Temecula strain), isolated from a naturally infected grapevine with Pierce's disease (PD) in a wine-grape-growing region of California. Comparative analyses with a previously sequenced X.fastidiosa strain responsible for citrus variegated chlorosis (CVC) revealed that 98% of the PD X.fastidiosa Temecula genes are shared with the CVC X. fastidiosa strain 9a5c genes. Furthermore, the average amino acid identity of the open reading frames in the strains is 95.7%. Genomic differences are limited to phage-associated chromosomal rearrangements and deletions that also account for the strain-specific genes present in each genome. Genomic islands, one in each genome, were identified, and their presence in other X.fastidiosa strains was analyzed. We conclude that these two organisms have identical metabolic functions and are likely to use a common set of genes in plant colonization and pathogenesis, permitting convergence of functional genomic strategies.18531018102

    Comparison of the genomes of two Xanthomonas pathogens with differing host specificities

    No full text
    The genus Xanthomonas is a diverse and economically important group of bacterial phytopathogens, belonging to the gamma-subdivision of the Proteobacteria. Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, which affects most commercial citrus cultivars, resulting in significant losses worldwide. Symptoms include canker lesions, leading to abscission of fruit and leaves and general tree decline(1). Xanthomonas campestris pv. campestris (Xcc) causes black rot, which affects crucifers such as Brassica and Arabidopsis. Symptoms include marginal leaf chlorosis and darkening of vascular tissue, accompanied by extensive wilting and necrosis(2). Xanthomonas campestris pv. campestris is grown commercially to produce the exopolysaccharide xanthan gum, which is used as a viscosifying and stabilizing agent in many industries(3). Here we report and compare the complete genome sequences of Xac and Xcc. Their distinct disease phenotypes and host ranges belie a high degree of similarity at the genomic level. More than 80% of genes are shared, and gene order is conserved along most of their respective chromosomes. We identified several groups of strain-specific genes, and on the basis of these groups we propose mechanisms that may explain the differing host specificities and pathogenic processes.417688745946
    corecore