6,863 research outputs found

    Clustering of rare earth in glasses, aluminum effect: experiments and modeling

    Get PDF
    Luminescent spectra of Eu3+-doped sol-gel glasses have been analyzed during the densification process and compared according to the presence or not of aluminum as a codoping ion. A transition temperature from hydrated to dehydroxyled environments has been found different for doped and codoped samples. However, only slight modifications have been displayed from luminescence measurements beyond this transition. To support the experimental analysis, molecular dynamics simulations have been performed to model the doped and codoped glass structures. Despite no evidence of rare earth clustering reduction due to aluminum has been found, the modeled structures have shown that the luminescent ions are mainly located in aluminum-rich domains. The synthesis of both experimental and numerical analyses has lead us to interpret the aluminum effect as responsible for differences in structure of the luminescent sites rather than for an effective dispersion of the rare earth ions. (C) 2004 Elsevier B.V. All rights reserved

    Site-Directed Mutagenesis to Assess the Binding Capacity of Class S Protein of Staphylococcus aureus Leucotoxins to the Surface of Polymorphonuclear Cells

    Get PDF
    Staphylococcal leucotoxins result from the association of class S components and class F component inducing the activation and the permeabilization of the target cells. Like α-toxin, the leucotoxins are pore-forming toxins with more than 70% β-sheet. This was confirmed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. In addition, threonine 28 of a predicted and conserved β-sheet at the N-terminal extremity of class S proteins composing leucotoxins aligns with histidine 35 of α-toxin, which has a key role in oligomerization of the final pore. Flow cytometry was used to study different aminoacid substitutions of the threonine 28 in order to evaluate its role in the biological activity of these class S proteins. Finally, results show that threonine 28 of the leucotoxin probably plays a role similar to that of histidine 35 of α-toxin. Mutations on this threonin largely influenced the secondary interaction of the class F component and led to inactive toxin

    Identification of novel aphid-killing bacteria to protect plants.

    Get PDF
    Aphids, including the peach-potato aphid, Myzus persicae, are major insect pests of agriculture and horticulture, and aphid control measures are limited. There is therefore an urgent need to develop alternative and more sustainable means of control. Recent studies have shown that environmental microbes have varying abilities to kill insects. We screened a range of environmental bacteria isolates for their abilities to kill target aphid species. Tests demonstrated the killing aptitude of these bacteria against six aphid genera (including Myzus persicae). No single bacterial strain was identified that was consistently toxic to insecticide-resistant aphid clones than susceptible clones, suggesting resistance to chemicals is not strongly correlated with bacterial challenge. Pseudomonas fluorescens PpR24 proved the most toxic to almost all aphid clones whilst exhibiting the ability to survive for over three weeks on three plant species at populations of 5–6 log CFU cm−2 leaf. Application of PpR24 to plants immediately prior to introducing aphids onto the plants led to a 68%, 57% and 69% reduction in aphid populations, after 21 days, on Capsicum annuum, Arabidopsis thaliana and Beta vulgaris respectively. Together, these findings provide new insights into aphid susceptibility to bacterial infection with the aim of utilizing bacteria as effective biocontrol agents

    Modelling and simulating change in reforesting mountain landscapes using a social-ecological framework

    Get PDF
    Natural reforestation of European mountain landscapes raises major environmental and societal issues. With local stakeholders in the Pyrenees National Park area (France), we studied agricultural landscape colonisation by ash (Fraxinus excelsior) to enlighten its impacts on biodiversity and other landscape functions of importance for the valley socio-economics. The study comprised an integrated assessment of land-use and land-cover change (LUCC) since the 1950s, and a scenario analysis of alternative future policy. We combined knowledge and methods from landscape ecology, land change and agricultural sciences, and a set of coordinated field studies to capture interactions and feedback in the local landscape/land-use system. Our results elicited the hierarchically-nested relationships between social and ecological processes. Agricultural change played a preeminent role in the spatial and temporal patterns of LUCC. Landscape colonisation by ash at the parcel level of organisation was merely controlled by grassland management, and in fact depended on the farmer's land management at the whole-farm level. LUCC patterns at the landscape level depended to a great extent on interactions between farm household behaviours and the spatial arrangement of landholdings within the landscape mosaic. Our results stressed the need to represent the local SES function at a fine scale to adequately capture scenarios of change in landscape functions. These findings orientated our modelling choices in the building an agent-based model for LUCC simulation (SMASH - Spatialized Multi-Agent System of landscape colonization by ASH). We discuss our method and results with reference to topical issues in interdisciplinary research into the sustainability of multifunctional landscapes

    Rare-earth-activated glasses for solar energy conversion

    Get PDF
    The solar cells efficiency may be improved by better exploitation of the solar spectrum, making use of the down-conversion mechanism, where one high energy photon is cut into two low energy photons. The choice of the matrix is a crucial point to obtain an efficient down-conversion process with rare-earth ions. When energy transfer between rare earth ions is used to activate this process, high emission and absorption cross sections as well as low cut-off phonon energy are mandatory. In this paper we present some results concerning 70SiO2-30HfO2 glass ceramic planar waveguides co-activated by Tb3+/Yb3+ ions, fabricated by sol gel route using a top-down approach, and a bulk fluoride glass of molar composition 70ZrF4 23.5LaF3 0.5AlF3 6GaF3 co-activated by Pr3+/Yb3+ ion. Attention is focused on the assessment of the energy transfer efficiency between the two couples of rare earth ions in the different hosts

    Mechanism of baricitinib supports artificial intelligence-predicted testing in COVID-19 patients

    Get PDF
    Abstract Baricitinib, is an oral Janus kinase (JAK)1/JAK2 inhibitor approved for the treatment of rheumatoid arthritis (RA) that was independently hypothesized, using artificial intelligence (AI)-algorithms, to be useful for the treatment of COVID-19 infection via a proposed anti-cytokine effects and as an inhibitor of host cell viral propagation1,2. We validated the AI-predicted biochemical inhibitory effects of baricitinib on human numb-associated kinase (hNAK) members measuring nanomolar affinities for AAK1, BIKE, and GAK. Inhibition of NAKs led to reduced viral infectivity with baricitinib using human primary liver spheroids, which express hAAK1 and hGAK. We evaluated the in vitro pharmacology of baricitinib across relevant leukocyte subpopulations coupled to its in vivo pharmacokinetics and showed it inhibited signaling of cytokines implicated in COVID-19 infection. In a case series of patients with bilateral COVID-19 pneumonia, baricitinib treatment was associated with clinical and radiologic recovery, a rapid decline in SARS-CoV-2 viral load, inflammatory markers, and IL-6 levels. This represents an important example of an AI-predicted treatment showing scientific and clinical promise during a global health crisis. Collectively, these data support further evaluation of the AI-derived hypothesis on anti-cytokine and anti-viral activity and supports its assessment in randomized trials in hospitalized COVID-19 patients.</jats:p
    corecore