454 research outputs found

    Med Sci.

    Get PDF
    Since our seminal study in 2003, much has been written about core planar cell polarity (core PCP) signaling and the inner ear. In just a few years, and using the inner ear as a model system, our understanding of the molecular basis of this signaling pathway and how it can influence the development of tissues in mammals has increased considerably. Recently, a number of studies using various animal models of development have uncovered original relationships between the cilia and PCP, and the study of the hair cells of the inner ear has helped elucidating one of these links. In this review, we highlight the differences of PCP signaling between mammals and invertebrates. In the light of recent results, we sum up our current knowledge about PCP signaling in the mammalian cochlear epithelium and we discuss the impact of recent data in the field. We focus our attention on the interrelationship between asymmetric polarity complexes and the position of the cilium, which is essential for the establishment of the overall tissue polarity

    The deformation theory of hyperbolic cone-3-manifolds with cone-angles less than 2Ï€2\pi

    Full text link
    We develop the deformation theory of hyperbolic cone-3-manifolds with cone-angles less than 2Ï€2\pi, i.e. contained in the interval (0,2Ï€)(0,2\pi). In the present paper we focus on deformations keeping the topological type of the cone-manifold fixed. We prove local rigidity for such structures. This gives a positive answer to a question of A. Casson.Comment: Minor corrections; references update

    Front Aging Neurosci

    Get PDF
    Decline in episodic memory is one of the hallmarks of aging and represents one of the most important health problems facing western societies. A key structure in episodic memory is the hippocampal formation and the dentate gyrus in particular, as the continuous production of new dentate granule neurons in this brain region was found to play a crucial role in memory and in age-related decline in memory. As such, understanding the molecular processes that regulate the relationship between adult neurogenesis and aging of memory function holds great therapeutic potential. Recently, we found that Vang-gogh like 2 (Vangl2), a core component of the planar cell polarity signaling pathway, is enriched in the dentate gyrus of adult mice. In this context, we sought to evaluate the involvement of this effector of the Wnt/PCP pathway in both adult neurogenesis and memory abilities in adult and middle-aged mice. Using a heterozygous mouse model carrying a dominant negative mutation in Vangl2 gene, we show that alteration in Vangl2 expression decreases the survival of adult-born granule cells and advances the onset of decrease in cognitive flexibility. Inability of mutant mice to erase old irrelevant information to the benefit of new relevant ones highlights a key role of Vangl2 in interference-based forgetting. Taken together, our findings show for the first that Vangl2 activity may constitute an interesting target to prevent age-related decline in hippocampal plasticity and memory.Bordeaux Region Aquitaine Initiative for NeuroscienceNeurogénèse hippocampique: un nouveau substrat de la mémoir

    Inner ear hair cells produced in vitro by a mesenchymal-to-epithelial transition

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of National academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 104 (2007): 16675-16680, doi:10.1073/pnas.0704576104.Sensory hair cell loss is a major contributor to disabling hearing and balance deficits that affect >250 million people worldwide. Sound exposures, infections, drug toxicity, genetic disorders, and aging all can cause hair cell loss and lead to permanent sensory deficits. Progress toward treatments for these deficits has been limited, in part because hair cells have only been obtainable via microdissection of the anatomically complex internal ear. Attempts to produce hair cells in vitro have resulted in reports of some success, but have required transplantation into embryonic ears or co-culturing with other tissues. Here we show that avian inner ear cells can be cultured and passaged for months, frozen, and expanded to large numbers without other tissues. At any point from passage 6 up to at least passage 23, these cultures can be fully dissociated and then aggregated in suspension to induce a mesenchymal-to-epithelial transition that reliably yields new polarized sensory epithelia. Those epithelia develop numerous hair cells that are crowned by hair bundles, comprised of a single kinocilium and an asymmetric array of stereocilia. These hair cells exhibit rapid permeance to FM1-43, a dye that passes through open mechanotransducing channels. Since a vial of frozen cells can now provide the capacity to produce bona fide hair cells completely in vitro, these discoveries should open new avenues of research that may ultimately contribute to better treatments for hearing loss and other inner ear disorders.Supported by NIH grants DC00200 and DC006182to J.T.C

    Cochlear progenitor number is controlled through mesenchymal FGF receptor signaling

    Get PDF
    The sensory and supporting cells (SCs) of the organ of Corti are derived from a limited number of progenitors. The mechanisms that regulate the number of sensory progenitors are not known. Here, we show that Fibroblast Growth Factors (FGF) 9 and 20, which are expressed in the non-sensory (Fgf9) and sensory (Fgf20) epithelium during otic development, regulate the number of cochlear progenitors. We further demonstrate that Fgf receptor (Fgfr) 1 signaling within the developing sensory epithelium is required for the differentiation of outer hair cells and SCs, while mesenchymal FGFRs regulate the size of the sensory progenitor population and the overall cochlear length. In addition, ectopic FGFR activation in mesenchyme was sufficient to increase sensory progenitor proliferation and cochlear length. These data define a feedback mechanism, originating from epithelial FGF ligands and mediated through periotic mesenchyme that controls the number of sensory progenitors and the length of the cochlea. DOI: http://dx.doi.org/10.7554/eLife.05921.00
    • …
    corecore