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Abstract

Starting with a compact hyperbolic cone-manifold of dimensign 3, we study the deformations of the metric with the aim
of getting Einstein cone-manifolds. If the singular locus is a closed codimension 2 submanifold and all cone angles are smaller
than 2r, we show that there is no non-trivial infinitesimal Einstein deformations preserving the cone dngiésthisarticle:
G. Montcouquiol, C. R. Acad. Sci. Paris, Ser. | 340 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur larigidité des cdnes-variétés hyperboliqueartant d’'une cdne-variété hyperbolique de dimensipr3, on étudie les
déformations de la métrique dans le but d’obtenir des cones-variétés Einstein. Dans le cas ou le lieu singulier est une sous-variéte
fermée de codimension 2 et que tous les angles coniques sont plus petits, qurerBontre qu'il n'existe pas de déformations
Einstein infinitésimales non triviales préservant les angles conioas citer cet article: G. Montcouquiol, C. R. Acad. Sci.

Paris, Ser. | 340 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version francaise abrégée

Dans leur article [5], Hodgson et Kerckhoff montrent qu'il est impossible de déformer une céne-variété hy-
perbolique de dimension 3 vérifiant certaines hypothéses sans modifier ses angles coniques. Le principe de ls
démonstration est de réussir a appliquer la méthode de Calabi—Weil aux cdnes-variétés : on montre que la repré:
sentation d’holonomie n'admet pas de déformations non triviales du type voulu. On rencontre ce faisant toutes les
difficultés inhérentes a I'étude des cones-variétés.

Dans le cas des variétés fermées, Koiso [6] a donné un analogue de la méthode de Calabi—-Weil, qui étudie
directement les déformations de la métrique (cf. aussi [1], Section 12.H). Cette méthode est plus facilement géné-
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ralisable et s’applique, en dimension supérieure, a une classe de variétés plus vaste, a savoir les variétés Einstei
a courbure suffisamment négative. L'objet de cette Note est d'adapter la méthode de Koiso pour démontrer qu’en
dimension supérieure ou €gale a 3, et sous des hypothéses voisines de celles du théoréme de Hodgson et Kerckho
on ne peut pas déformer une cone-variété hyperbolique en des cones-variétés Einstein sans en modifier les angle
coniques.

On se place dans le cadre suivari:est une variété compacte sans bordYeést une sous-variété fermée
plongée de codimension 2 aygntomposantes connexes. Une structurediee-variétésur M, de lieu singulier
X etd’angles coniquesy, . . ., o, est la donnée d'une métrique riemaniegr@on complete) sud/ \ X etd’une
métrique riemannienng sur chaque composante connexede X, de telle sorte que quand on se rapproche d’'un
point de X;, ¢ ressemble asymptotiguement au produitggdeavec la métrique d’un cone (de dimension deux)
d’angle au sommet;.

Les déformations infinitésimales d’'une telle structure peuvent toujours se mettre sous une forme standard au
voisinage du lieu singulier (dans notre cadre, ces déformations standards forment une famille de dimension infinie).
En particulier, une déformation ne modifiant pas les angles a la propriété H%#reérivée covariante?.

Une des difficultés dans I'étude des cOnes-variétés est de pouvoir faire les intégrations par parties. On cite dans
la Section 3 deux résultats dans ce sens.

Soit M une cbne-variété hyperbolique, dont tous les angles coniques sont strictement inférieuRagtant
d’une déformation infinitésimale Einstelg préservant les angles (donc & dérivée covariafjela démonstration
de sa trivialité se fait en deux temps. On veut d’abord se débarrasser des déformations triviales, et on cherche pou
ce faire a imposer la condition de jauge de Bianchi. On a alors besoin de résoudre I'équation de normalisation
B o §*(a) = B(ho), ce qui peut se faire en imposant de bonnes conditions sur la 1-tormp@nd tous les angles
conigues sont strictement inférieursza gSection 4).

On applique ensuite une technique de Bochner a la déformation normadisée— §*«. En utilisant la formule
de Weitzenbdck idoine et un premier résultat d’intégration par parties, on obtieth + (n — 2)h =0, et une
derniére intégration par parties permet de conclure /gue §*« (Section 5), et donc que I'on a bien rigidité
infinitésimale relativement aux angles coniques au sein des cones-variétés Einstein.

1. Introduction

In their celebrated article [5], Hodgson and Kerckhoff showed that it is not possible to deform a hyperbolic
cone-manifold of dimension 3 (with some restrictions on its geometry) while keeping its cone angles fixed. Their
results lead to many applications in the geometry of hyperbolic 3-manifolds, such as the geometrization of small
orbifolds or the study of Kleinian groups [2,3].

The main idea of this theorem’s proof is to apply the Calabi—Weil arguments to the setting of cone-manifolds:
one shows that the holonomy representation has no non-trivial deformation of the required type. This is not done
without some difficulties, which are unavoidable when one deals with cone-manifolds; we shall encounter them
later.

In the closed manifold case, there exists a method due to Koiso [6] (cf. also [1] Section 12.H), similar to the
Calabi—Weil arguments, which uses no longer the holonomy representation, but instead takes directly into account
the deformation of the metric. This second method has the merit of being easier to generalize; it deals in larger
dimensions with a wider class of manifolds, namely the Einstein ones (under some curvature restrictions).

The goal of this Note is then to adapt the Koiso arguments to prove the following theorem:

Theorem 1.1.Let M be a compact hyperbolic cone-manifold of dimengion 3, whose singular locus is a closed
codimensior? submanifold and whose cone angles are all strictly smaller @ranThenM is infinitesimally rigid
among Einstein cone-manifolds with fixed cone angles.
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2. Cone-manifolds and their deformations

Cone-manifolds can be defined in different ways, depending on what kind of cone-manifolds and properties
are being used. Constant curvature cone-manifolds are the easiest to describe, either geometrically, as a gluing o
geodesic simplices, or by stating the metric explicitly. It is this last approach that we will use, despite the fact that
we will deal mainly with hyperbolic cone-manifolds.

In the general case, the singular locus of a cone-manifold can be rather intricate, but for the purpose of our study
we will restrict in this Note to the following setting.

Let M be aclosedmanifold of dimensiom > 3, and let~ = [[”_; X; be a closed, embedded submanifold of
codimension 2 (theZ; are the connected componentsXf. Throughout this text we will often us# to denote
eitherM or, improperly,M \ X.

Definition 2.1. Let oy, ..., «,, be positive real numbers. The manifald carries acone-manifoldstructure, of
singular locus> =] [/_, X; and cone anglesy, ..., ), if:

— M\ X carries a Riemannian metri¢ which is not complete,

— for alli between 1 angh, X; carries a Riemannian metrig,

— for all i between 1 andgb, every pointx of X; admits a neighborhoodf in M diffeomorphic toD? x U,
whereU =V N X; is a neighborhood of in X;. Using (local) cylindrical coordinates in this neighborhood,
the metricg can be written as

g=dr?+r2do% + g +q.

where the angle coordinateis not defined modulos2 but modulo the cone angle;, and whereg is a
symmetric 2-tensor such thatg, ¢) = O(r?) andg(Vq, Vq) = O(r).

We can then define a hyperbolic cone-manifold as a cone-manifold such that the Riemanniangnzetdgs
are hyperbolic. In this case the tengodefined above ig = (sinh(r)2 — r2) d9? + (coshr)? — 1)g;.

Let M be a cone-manifold like above, with metgcand singular locusZ’. Now let g; be a smooth family
of singular metrics, such thabh = ¢ and that for allz, g, defines a cone-manifold structure &f with singular
locusX.

Owing to the local expression of a cone metric, one can show that, up to modifying the fanbjydiffeo-
morphisms, the symmetric 2-tensoe= %hzo is, in a neighborhood of the singular locus, a linear combination
of four kinds of deformations, which modifies respectively the cone angles, the metric of the singular locus, the
remaindely, and last, the way of ‘gluing’ the angle coordinate when passing from a coordinate chart to another.

What should be noted is that these four kinds of tensors (‘standard infinitesimal deformations’Y.&réirt
that only the last three have square-integrable covariant derivative. Hence, it%eoperty of the covariant
derivative of a deformation that tells us whether it preserves the cone angles or not.

3. Two results of integration by parts

Throughout the rest of this text/ will denote a cone-manifold as defined above.

Since the smooth part of a cone-manifold is non-compact, it is impossible to use directly the Stokes theorem.
Thus we have to prove the integration by parts results that will be needed later.

The first result is due to Cheeger [4]. Actually he did not state the following theorem in this form; he rather
proved two results which combined (and slightly adapted) give a proof of the following, cf also the appendix
of [5].
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Theorem 3.1.Leta € 27M and g € 271 M be two smooth forms oM such thatx, da, 8, andsg are in L2.
Then({a, §8) = (do, B).

The next result deals with tensors instead of forms, but the proof, although not similar, is basically an adaptation
of the ideas of Cheeger mentioned above.

Theorem 3.2.Letu € C®(T") M), v e C®(T"+19 M) be two tensors such that Vu, v, and V*v are in L2.
Then(u, V*v) = (Vu, v).

4. Einstein deformations and the normalization equation

An Einstein metrids a Riemannian metrig which satisfies the equation ¢© = cg, where the left term is the
Ricci curvature tensor andis a constant. By rescaling the metric one can multiply any positive number, so
what is only relevant here is the sign a@fAll constant curvature metrics are Einstein, and in fact in dimension 3
these are the only ones. Thus the Einstein condition can be seen as a generalization, or a weakened form, of the
constant curvature condition.

Since we are dealing with negatively curved cone-manifolds, and chiefly with hyperbolic ones, we will only
consider Einstein metrics such thatg) = 0, whereE (g) =ric(g) + (n — 1)g, and the constant — 1 is choosen
so that hyperbolic metrics satisfy this equation.

If g; is a smooth family of Einstein metrics (i.e. satisfyifgg;) = 0) on a given manifold/ with go = g, then
the symmetric 2-tensadr = %g,h:o satisfies the linearized Einstein equatiBfs) = 0. The computation oE;,
is classical, cf for instance [1], chapter 1 (and also for a detailed explanation of the involved operators):

Ej(h) = ViVgh — 2Rgh — 8% (28,h + dtrg h).

We will often omit the subscripg. Any symmetric 2-tensok on M satisfying the equatiorE;,(h) = 0 will be
called aninfinitesimal Einstein deformatioof the (Einstein) manifoldM, g).

Now, if g is Einstein andp is a diffeomorphism of\/, then the metrigs*g is also Einstein. Therefore, i,
is a smooth family of diffeomorphisms withg = Id, the induced infinitesimal deformatio§¢;‘g|t:o will of
course be Einstein. Such a deformation will be cathladal. The set of trivial deformations is easily shown to be
equal to the image of the operaiir: 21M — S2M, which maps a forna to the symmetric 2-tensor defined by
§*a(x, y) = 3((Vea)(») + (Vya)(x)), cf. [1], Section 1.60.

The usual way to get rid of trivial deformations is to impose a gauge condition on the infinitesimal deforma-
tions, which means to consider only deformations satisfying some equation. Here we will use the Bianchi gauge,
that is, we want our deformatioristo satisfy 8,(h) = 0, where the Bianchi operator (related to the meg)c
B :S§2M — 1M is defined byBe(h) = 8,h + %dtrg h. The operatoB appearing here is the adjoint of the oper-
ators* introduced previously; alternatively, it is the restrictiont®M of V*.

Thus, starting with an infinitesimal deformatidg, we want to be able to modify it by a trivial deformation,
in an essentially unique way, so that the result will satisfy the gauge condition. More precisely, we want to find a
form « such thats(hp — §*«) = 0, or equivalently to solve theormalization equation

B o&*a = B(ho).
Using the fact thaVo = §*«a + % doa and the well-known Weitzenbdck formula
Aa = (d§ + dd)a = V*Va +ric(a) = V*Va — (n — D,

an easy computation giveso §*a = %(V*Va + (n —Da).
This operator is well-behaved, in particular it is elliptic, so it has good regularity properties: its solutions will
be smooth as soon as the second term is. But sadly, since a cone-manifold is singular, we will not be able to use
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all the result of the standard theory of elliptic operators. Instead, we now have to investigate directly the properties
of the solutions of the normalization equation. The goal is to solve this equatica ¢ (with L a shorthand for
%(V*Voe + (n — 1)), while keeping enough information on the solution in order to be able to use a Bochner
technique. This motivates the following theorem.

Theorem 4.1.Let M be a hyperbolic cone-manifold whose cone angles are all strictly smaller 2harlet
¢ € 21M be a smootti-form which is also inL2(T*M). Then there exists a unique forme £21M, solution to
the equationL« = ¢, such thatr, Vo, dSo, and V do are in L2,

Using the framework of unbounded linear operators in Hilbert spaces, one can find several domains dn which
is self-adjoint and thus invertible. Now we have to show that there is a domain with the required properties.

To prove this, one has to actually solve the equafien= 0 near the singular locus. This involves some book-
keeping; the subtlest part is to find a suitable decompositian 8fnce the angle coordinatas only local, it is not
possible to carry out a decomposition in Fourier series. However one can exhibit a Hilbert basis of eigenvectors of
the Laplacian on functions on the boundary of a tubular neighborhood of the singular locus, such that any element
of this basis is also an eigenvector for the derivative in@tdirection. Now, using some commutation relations
(closely related to the Weitzenbdck formula for 1-forms mentioned above), one can deduce from this a similar
Hilbert basis for 1-forms.

So one can writee as a sum of functions of the radial coordinatémes these eigenvectors of the Laplacian.
Thus we reduce the PDE to a family of linear differential equations, and we have a good knowledge of the behaviour
of the solutions of the homogeneous equation. This behaviour is explicitly related to the values of the cone angles:
the pointwise norm of a given solution near a component of the singular locus of@igteughly equal ta:r*,
with k = +1 =+ 2pra~t ork = £2pma~1, wherep is an integer.

Using this knowledge one can find a good domain for our opedatshen all cone angles are smaller tharn 2
namely, one can solve the equatiba = ¢ with o, Vo, and d in L2, and there is uniqueness of such a solution.

So what is left to show is that this solution satisfieda € L2. This is true if¢ is compactly supported: in this case
La equals 0 near the singular locus so one just has to use the preceding computation to prove it. Eventually, one
can show that this is also true for arbitrafypy using a sequeneg,, compactly supported and convergingto

5. Infinitesimal rigidity

Theorem 5.1.Let M be a hyperbolic cone-manifold whose cone angles are all strictly smallerzhahet /g be
an infinitesimal Einstein deformation such thatand Vg are in L2. Then the deformatiohyg is trivial, that is,
there exists a fornx € 21M such thathg = §*«.

The first step of the proof is to solve the normalization equagiers*« = 8(hg). By hypothesigig is smooth,
square-integrable, with square-integrable covariant derivatives(sg) is smooth and in.2. We can therefore
apply Theorem 4.1 to get a solutienof the equation withy, Vo, dSe, andV de in L2. Seth = hg — 8*a; our
goal is to show that is actually zero. Notice that we have lost information in this normalization process. For
instance, we have no warranty that the covariant derivative of the normalized deformation is still square-integrable;
we only have information about some linear combinations of its first order derivative. Returning to the proof: since
E;, (ho) = E!’S, (h) =0, we get

V*Vh —2h+2(trh)g=0 and 8h+dtrh=0.

Taking the trace (with respect g9 of the first equation yielda (tr ) + 2(n — 1) tr k = 0. If we integrate against
trh, we get

0=(A(trh) +2(n — D tri, trh) = [dtrh||® + 2(n — D tr k||,
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so trh = 0. The above integration by parts is valid, according to Theorem 3.1 and to the faktthat — §*« is
in L2, as well as its trace and the differential of its trace/d#r dtrig + dSa. So what we have now is

V*Vh—-2h=0, 8h=0, and th=0.

We then use the following Weitzenbéck formula (cf. [1], Section 12.69), valid for a symmetric 2-teasoa
hyperbolic manifold:

V*Vh=(8Vd" +d"8Y)h +nh — (rh)g,

where# is viewed as a 1-form with values ii*M and & andsV are the exterior differential and co-differential
associated to the connexidn for form with values in7*M. Combined with the fact thatVh = 6k = 0 and
tri = 0, this formula yields$sY dV i + (n — 2)h = 0.

We want to integrate this by parts agaitstwhich is a bit tricky. First we note that¥d is in L?; indeed,
Vho is in L2, so we just have to check thal &« is in L2. But d"8*« = (dV)%« — 1 dV da; the operator d¥)?
is just minus the curvature operator, so siacand Vdo are L2, we're done. Then we writé = ho — §*a =
ho+ % da —dV«; the first partig + % da is in L2, with square-integrable covariant derivative, so it can be integrated
by parts without any trouble. The second paftds a bit harder to integrate by parts, but this can be done using
again the fact thatd¥)? in a zeroth order bounded operator.

Eventually we get

0=(sVd"h + (n — 2k, h)= | d"h|* + (n — 212,

from which we conclude thdt = 0. So our initial deformatiothg is equal tos*«, that is, it is trivial.
We are now able to prove the infinitesimal rigidity result mentioned in the introduction:

Theorem 5.2.Let M be a hyperbolic cone-manifold whose cone angles are all strictly smallerzhamhenm
is infinitesimally rigid among Einstein cone-manifolds with fixed cone angles.

Indeed, any infinitesimal deformatignof the cone-manifold structure preserving the cone angles is (up to a
trivial deformation) inL2, with covariant derivativé7/ also in L2, as noticed in section 2. So if it is an Einstein
deformation, we can apply the preceding theorem to conclude that any such deformation is trivial.

References

[1] A. Besse, Einstein Manifolds, Springer-Verlag, Berlin, 1987.

[2] M. Boileau, B. Leeb, J. Porti, Uniformization of small 3-orbifolds, C. R. Acad. Sci. Paris, Ser. | 332 (1) (2001) 57-62.

[3] J. Brock, K. Bromberg, On the density of geometrically finite Kleinian groups, Acta Math. 192 (1) (2004) 33-93.

[4] J. Cheeger, On the Hodge theory of Riemannian pseudomanifolds, in: Geometry of the Laplace Operator (Proc. Sympos. Pure Math., Univ.
Hawaii, Honolulu, Hawaii, 1979), in: Proc. Sympos. Pure Math., vol. XXXVI, Amer. Math. Soc., Providence, RI, 1980, pp. 91-146.

[5] C. Hodgson, S. Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom. 48 (1998) 1-59.

[6] N. Koiso, A decomposition of the space of Riemannian metrics on a manifold, Osaka J. Math. 16 (1979) 423-429.



