103 research outputs found

    The role of autophagy in osteoclast differentiation and bone resorption function

    Get PDF
    Autophagy is an evolutionary conserved and highly regulated recycling process of cellular wastes. Having a housekeeping role, autophagy through the digestion of domestic cytosolic organelles, proteins, macromolecules, and pathogens, eliminates unnecessary materials and provides nutrients and energy for cell survival and maintenance. The critical role of autophagy and autophagy-related proteins in osteoclast differentiation, bone resorption, and maintenance of bone homeostasis has previously been reported. Increasing evidence reveals that autophagy dysregulation leads to alteration of osteoclast function and enhanced bone loss, which is associated with the onset and progression of osteoporosis. In this review, we briefly consolidate the current state-of-the-art technology regarding the role of autophagy in osteoclast function in both physiologic and pathologic conditions to have a more general view on this issue

    Passivating effect of ternary alloyed AgZnSe shell layer on the structural and luminescent properties of CdS quantum dots

    Get PDF
    The surface passivation of luminescent CdS quantum dots (QDs) via epitaxial overgrowth of new alloyed ternary AgZnSe shell layer is reported here. Two synthetic fabrication strategies were used to tune the optical properties of CdS/AgZnSe core/alloyed shell QDs across the visible region. Transmission electron microscopy, powder X-ray diffraction, Raman, UV/vis and fluorescence spectrophotometric techniques were used to characterize the nanocrystals. Analysis of the internal structure of the QDs revealed that homogeneity of the particle reduced as the size increased, thus indicating that the QDs growth transitioned from an interfacial epitaxial homogenous state to a heterogeneous state. The crystal structure of the QDs revealed a distinct zinc-blende diffraction pattern for CdS while CdS/AgZnSe core/alloyed shell QDs kinetically favoured a phase change process from the zinc-blende phase to a wurtzite phase. Analysis of the photophysical properties revealed varying degrees of interfacial defect state suppression in CdS/AgZnSe QDs which was dependent on the QDs size. Specifically, the fluorescence quantum yield (QY) of CdS/AgZnSe QDs was at most ~5-fold higher than the CdS core and varied from 35% to 73%. We found that band gap modulation via the synthetic fabrication strategy employed, influenced the optical properties of the core/alloyed shell QDs. The CdS/AgZnSe QDs produced in this work hold great promise in light-emitting optoelectronic applications.The Water Research Council (WRC) project K5/2752, South Africa and the University of Pretoria.http://www.elsevier.com/locate/mssphj2020Chemistr

    Dynamics of fully coupled rotators with unimodal and bimodal frequency distribution

    Full text link
    We analyze the synchronization transition of a globally coupled network of N phase oscillators with inertia (rotators) whose natural frequencies are unimodally or bimodally distributed. In the unimodal case, the system exhibits a discontinuous hysteretic transition from an incoherent to a partially synchronized (PS) state. For sufficiently large inertia, the system reveals the coexistence of a PS state and of a standing wave (SW) solution. In the bimodal case, the hysteretic synchronization transition involves several states. Namely, the system becomes coherent passing through traveling waves (TWs), SWs and finally arriving to a PS regime. The transition to the PS state from the SW occurs always at the same coupling, independently of the system size, while its value increases linearly with the inertia. On the other hand the critical coupling required to observe TWs and SWs increases with N suggesting that in the thermodynamic limit the transition from incoherence to PS will occur without any intermediate states. Finally a linear stability analysis reveals that the system is hysteretic not only at the level of macroscopic indicators, but also microscopically as verified by measuring the maximal Lyapunov exponent.Comment: 22 pages, 11 figures, contribution for the book: Control of Self-Organizing Nonlinear Systems, Springer Series in Energetics, eds E. Schoell, S.H.L. Klapp, P. Hoeve

    A Monte Carlo Simulation-Based Approach to Evaluate the Performance of Three Meteorological Drought Indices in Northwest of Iran

    Get PDF
    Although meteorological drought indices are considered as important tools for drought monitoring, they are embedded with different theoretical and experimental structures. Regarding the different geographic and climatic conditions around the world, the most meteorological drought indices have been commonly applied for drought monitoring in different parts of the world. Interestingly, it is observed that such indices in the published studies on drought monitoring have usually yielded inconsistent performance. On the other hand, most studies on drought monitoring as well as the performance of drought indices has been based on short-term historical data (less than 50 years). Therefore, this study aimed to analyze and compare the performance of three common indices of SPI, RAI and PNPI to predict long-term drought events using the Monte Carlo procedure and historical data. To do this end, the 50-year recorded or historical rainfall data across 11 synoptic stations in the Northwest of Iran were employed to generate 1000 synthetic data series so that the characteristics of long-term drought might be determined and the performance of those three indices might be analyzed and compared. The results indicated a very high comparative advantage of the SPI in terms of yielding a satisfactory and detailed analysis to determine the characteristics of long-term drought. Also, the RAI indicated significant deviations from normalized natural processes. However, these results could not reasonably and sufficiently predict long-term drought. Finally, the PNPI was determined as the most uncertain and spatial index (depending on average or coefficient of variation of rainfall data) in drought monitoring

    Predicting critical period to characterise over-year and within-year reservoir systems

    No full text
    corecore