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Abstract 23 

The surface passivation of luminescent CdS quantum dots (QDs) via epitaxial overgrowth of new 24 

alloyed ternary AgZnSe shell layer is reported here. Two synthetic fabrication strategies were used 25 

to tune the optical properties of CdS/AgZnSe core/alloyed shell QDs across the visible region. 26 

Transmission electron microscopy, powder X-ray diffraction, Raman, UV/vis and fluorescence 27 

spectrophotometric techniques were used to characterize the nanocrystals. Analysis of the internal 28 

structure of the QDs revealed that homogeneity of the particle reduced as the size increased, thus 29 

indicating that the QDs growth transitioned from an interfacial epitaxial homogenous state to a 30 

heterogeneous state. The crystal structure of the QDs revealed a distinct zinc-blende diffraction 31 

pattern for CdS while CdS/AgZnSe core/alloyed shell QDs kinetically favoured a phase change 32 

process from the zinc-blende phase to a wurtzite phase. Analysis of the photophysical properties 33 

revealed varying degrees of interfacial defect state suppression in CdS/AgZnSe QDs which was 34 

dependent on the QDs size. Specifically, the fluorescence quantum yield (QY) of CdS/AgZnSe 35 

QDs was at most ~5-fold higher than the CdS core and varied from 35-73%. We found that band 36 

gap modulation via the synthetic fabrication strategy employed, influenced the optical properties 37 

of the core/alloyed shell QDs. The CdS/AgZnSe QDs produced in this work hold great promise in 38 

light-emitting optoelectronic applications. 39 

 40 
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1. Introduction 47 

The wide electro-luminescent applications of colloidal semiconductor quantum dot (QD) 48 

nanocrystals in various fields of chemistry, biology and physics, stem from their unique 49 

optoelectronic properties [1,2]. Particularly, the size-dependent optical and electronic properties 50 

of QDs which are governed by the associated quantum confinement feature, allows tuning of the 51 

photoluminescence (PL) emission from the ultraviolet/visible (UV/vis) region to the far infra-red 52 

region [3-6]. In contrast to bulk semiconductors in which the surface represents a tiny fraction of 53 

the bulk material, colloidal QDs have their size typically in the range of 2–10 nm. This unique 54 

characteristic enables a large number of atoms to be embedded on the QD surface [7].  55 

The QD surface represents a highly sensitive region that is exposed to its surrounding environment 56 

(matrices, solvents and various other species in solution) and it is typically coordinated by 57 

chemical ligands, surfactants or stabilizers that influence the QD optoelectronic properties [7]. The 58 

synergistic effects of precursor material which create low numbers of coordinated surface atoms 59 

may lead to highly reactive or localized electronic sites that are susceptible to redox and chemical 60 

processes. Thus, it is very likely for midgap, shallow or deep surface defect states to be formed 61 

and induce the pathway for poor PL properties. The characteristic phenomenon is nonradiative 62 

recombination exciton (electron and hole) states associated with low PL quantum yield (QY) [8,9]. 63 

One of the widely used strategies to eliminate surface traps is to passivate the QD core surface 64 

with a wider band gap shell material [10-13]. This strategy shifts the surface defects to the outer 65 

domain of the shell layer, thus improving the PL QY [4]. The electron and hole being localized in 66 

the core, represents a signature process associated with the low probability of the outer surface 67 

state being subjected to trapped photogenerated charge carriers [14,15].  68 



Over the past two decades, the most studied class of semiconductor QDs are the group II-VI metal 69 

chalcogenides with CdSe-based QDs being the most popular for fabricating new synthetic routes 70 

[16], shell passivation [17], ligand dynamics [18] and alloying [19]. On the other hand, CdS 71 

nanocrystals are probably the second most studied QD system [20-23], exhibiting an exciton Bohr 72 

radius of 3.0 nm [24] and a bulk band gap of 2.48 eV [25]. Its characteristic PL emission is known 73 

to be highly prone to surface defects which results in low PL QY [26]. Nonetheless, it is widely 74 

used as a shell layer to overcoat the surface of CdSe-based QDs. The well-known strategy to isolate 75 

the exciton wave function from the surface of the core QDs with embedded surface defects and 76 

dangling bonds is to coat with a shell layer of a wide band gap [27]. However, it is important to 77 

note that lattice mismatch between the core and binary shell material at the interface can also 78 

induce surface defects that degrade the luminescence of the core/shell QDs, thus lowering the PL 79 

QY [28].  80 

Another strategy which has drawn significant interest in improving the PL QY of binary core QDs 81 

is to coat the surface with an alloyed ternary shell layer. Alloyed QDs (ABxC1-x) have become 82 

important in mainstream nanoscale optical engineering due to the added degree of freedom in 83 

tuning the exciton energy for either extended PL emission range or improved optical properties 84 

[29-32]. The coating of an alloyed ternary shell around binary core QDs to improve the PL 85 

efficiency has mostly been reported for CdSe-based QDs [33,34] with rare reports for CdS-based 86 

QDs [13]. It is noteworthy that apart from the formation of a smooth gradient band gap, the lattice 87 

strain of the core/shell QDs can be relaxed due to alloying [35]. Furthermore, it has been 88 

demonstrated that shell alloying suppressed Auger exciton recombination in core/alloyed shell/ 89 

shell QDs, thus increasing the PL QY [36]. 90 



Overcoating a shell layer around the CdS core to improve the PL QY of QDs has rarely been 91 

studied. Thus, in this paper, we report on a new strategy to suppress the surface defect states of 92 

CdS QDs by coating with a new ternary alloyed shell layer. CdS QDs, characterized by low PL 93 

QY due to embedded surface defects were synthesized in this work via the organometallic 94 

synthetic route. We have demonstrated for the first time that improved PL QY in CdS QDs can be 95 

achieved via passivation with a ternary alloyed AgZnSe shell layer. To the best of our knowledge, 96 

our work is the first to overcoat a AgZnSe shell around CdS core QDs with the sole aim of 97 

suppressing interfacial defect states in the core QDs. The organic-phase CdS/AgZnSe core/alloyed 98 

shell QDs produced in this work hold great promise in light-emitting optoelectronic applications. 99 

 100 

2. Experimental section 101 

2.1. Materials 102 

Cadmium oxide (CdO), myristic acid, trioctylphosphine oxide (TOPO), hexadecylamine (HDA), 103 

trioctylphosphine (TOP), octadecene (ODE), oleic acid, sulphur (S), L-cysteine, diethylzinc 104 

(Et2Zn) and zinc oxide (ZnO) were purchased from Sigma Aldrich. Silver nitrate (AgNO3) was 105 

purchased from Saarchem. Selenium (Se) was purchased from Merck. Methanol, acetone, hexane 106 

and chloroform were purchased from ACE Chemicals. 107 

 108 

2.2. Characterization 109 

UV/vis absorption spectra were obtained using a Cary Eclipse (Varian) spectrophotometer. PL 110 

emission measurements were carried out using a Horiba Jobin Yvon Fluoromax-4 111 

spectrofluorometer. Powder X-ray diffraction (PXRD) measurements were determined using a 112 

Cu(Kα) radiation (λ=1.54184 Å) on a Bruker D2 Phaser. Transmission electron microscopy (TEM) 113 



images were produced using a JEOL JEM 2100F operated at 200 kV. Raman spectra were recorded 114 

using a WITec Alpha 300 micro-Raman imaging system with a 488 nm excitation laser and CCD 115 

detector at ambient temperature with the laser power below 2 mW in order to reduce heating 116 

effects. 117 

 118 

2.3. Preparation of the precursors 119 

2.3.1. TOPSe 120 

To prepare the Se precursor, 0.12 g Se was dissolved in 5 mL TOP and sonicated until complete 121 

dissolution of Se, thus resulting in a clear solution. The solution was then stirred at room 122 

temperature prior to use and was stable for 3 days. 123 

 124 

2.3.2. TOPZn 125 

To prepare the Zn precursor from Et2Zn, 1.93 g TOPO was firstly dissolved in 10 mL ODE and 5 126 

mL of oleic acid. The solution was then heated up until the complete dissolution of TOPO 127 

surfactant, thus resulting in a clear solution. Thereafter, 2 mL Et2Zn and 1 mL TOP were added 128 

and the solution was stirred at room temperature before use.  129 

To prepare the Zn precursor from ZnO, 0.4 g ZnO was added to a mixture of 15 mL ODE and 10 130 

mL oleic acid and sonicated for a few minutes. Thereafter, the precursor solution was stirred at 131 

room temperature prior to use. 132 

 133 

2.3.3. TOPAg 134 



Ag precursor was prepared by mixing 0.5 g AgNO3 with 5 mL TOP. The solution was then heated 135 

up until complete dissolution of the AgNO3 which was evident by the change in colour from 136 

colourless to brownish black. 137 

2.3.4. TOPS 138 

To prepare the TOPS precursor used in method 1 synthesis of CdS/AgZnSe QDs (refer to section 139 

2.4), 1.93 g TOPO was first dissolved in 15 mL ODE and 10 mL oleic acid followed by the addition 140 

of 0.16g S and 1 mL TOP. For method 2 synthesis of CdS/AgZnSe QDs (section 2.5), 1.93 g 141 

TOPO was dissolved in 10 mL ODE and 5 mL oleic acid, then 0.08 g S and 1 mL TOP was added 142 

thereafter. The solutions were sonicated and heated up to aid complete dissolution of the S and 143 

thereafter stirred at room temperature prior to use.  144 

 145 

2.4. Synthesis of CdS/AgZnSe core/alloyed shell QDs (method 1) 146 

The synthesis of CdS/AgZnSe core/alloyed shell QDs was carried out via the organometallic one-147 

pot synthetic route but with modifications [37].  Complexation between the Cd ion, surfactants 148 

and capping ligands was formed by mixing 1.3 g CdO, 1.2 g myristic acid, 1.93 g TOPO and 1.2 149 

g HDA with 50 mL ODE and 30 mL of oleic acid. The solution was bubbled with Ar gas and 150 

heated up until complete dissolution of the Cd ion which was evident by a change in colour of the 151 

solution from pale brown to colourless. At ~220 °C, TOPS solution was added into the Cd 152 

precursor solution to form the CdS core QDs. Once satisfactory growth of the QD core was 153 

achieved, a fraction of the growth solution was injected into a beaker. To form the core/alloyed 154 

shell QDs, 1 ml of TOPSe solution was added into the CdS growth solution followed swiftly by 155 

the addition of 1 mL TOPAg and TOPZn (using ZnO). Portions of the core/shell QDs were taken 156 

out at different time intervals. 157 



2.5. Synthesis of CdS/AgZnSe QDs (method 2) 158 

Method 2 synthesis was carried out according to the fabrication steps detailed in method 1 but with 159 

slight modifications of the precursor concentrations. For the complexation of Cd ion with the 160 

precursor materials, 2 mL TOP, 0.4 g CdO, 0.6 g HDA and 0.6 g myristic acid were mixed with 161 

20 mL ODE and 15 mL oleic acid. The synthetic process of method 1 was therefater followed by 162 

adding TOPS (prepared specifically for method 2) to form the CdS QDs. Formation of the 163 

core/alloyed shell QDs was followed according to method 1 except that TOPZn prepared from 164 

ET2Zn was used. 165 

 166 

3. Results and discussion 167 

3.1. Fabrication of the QDs  168 

One-pot organometallic synthesis of metal precursors in the presence of surfactants, organic-169 

capping ligands and a non-coordinating solvent (ODE) was used to engineer the structure of the 170 

QDs. It is well known that the growth kinetics influences the PL emission and absorption evolution 171 

of the QDs [38]. The nature of the precursor material with respect to the concentration, quantity, 172 

time of injection, temperature and the interplay between them are reaction conditions that influence 173 

the growth of the QDs. We have therefore exploited these reaction conditions to engineer the 174 

optical properties of CdS/AgZnSe core/alloyed shell QDs. 175 

In method 1 synthesis, higher quantities of the Cd metal precursor, surfactants, organic ligands and 176 

the non-coordinating solvent were used to aid the Cd-precursor complexation for the subsequent 177 

nucleation and growth of CdS QDs. Conversely, lower concentrations of the Cd precursor, 178 

surfactants and ligands were employed in method 2 synthesis of the QDs. Before adding the TOPS 179 

precursor, the Cd precursor solution was heated up to >200 °C to aid complete dissolution and 180 



complexation of the Cd precursor.  The change in colour of the solution from brown to colourless 181 

confirmed the complexation process which was accompanied by injection of the TOPS precursor. 182 

As the CdS core QDs nucleated, the temperature of the growth solution increased steadily and was 183 

accompanied by a concomitant change in the colour. During this period, a fraction of the CdS core 184 

QDs was removed in order to probe the structural and optical properties thereof in comparison to 185 

the core/alloyed shell QDs. 186 

The temperature at which the AgZnSe alloyed shell was overcoated on the CdS core surface is 187 

very crucial to the overall optical properties of the CdS/AgZnSe core/alloyed shell QDs. At higher 188 

temperature and longer reaction time, CdS QDs size distribution is expected to deteriorate and lead 189 

to broadening of the spectral line widths. On the other hand, overcoating the shell layer at relatively 190 

low temperature could either reduce the crystallinity of CdS/AgZnSe core/alloyed shell QDs or 191 

lead to incomplete decomposition of the precursor materials [39]. Therefore, an appropriate 192 

temperature was determined independently for each method used to fabricate the core/alloyed shell 193 

QDs. The concentration and rate at which the AgZnSe shell precursor is added is also crucial in 194 

influencing the optical properties of the QDs. Slow addition of the precursor shell materials 195 

prevents homogenous nucleation and induces most of the AgZnSe shell to grow heterogeneously 196 

on the CdS nuclei. Hence, the precursor solutions for the shell layering were injected into the CdS 197 

growth solution in swift succession. Addition of TOPSe, TOPZn and TOPAg precursors to the 198 

CdS growth solution triggered a progressive change in the colour of the solution from orange to 199 

red and to dark brown. Different sizes of the CdS/AgZnSe QDs were thereafter harvested at 200 

different time intervals whilst the QDs were purified with acetone, chloroform/acetone and 201 

chloroform/acetone/ethanol mixture. 202 

 203 



3.2. Structural properties 204 

3.2.1. Surface morphology 205 

TEM analysis was used to qualitatively probe the internal structure of the QDs with respect to the 206 

shape, size distribution, and shell coverage. Fig. 1A-C shows the TEM images of three different-207 

sized CdS QDs with average sizes of 6.0±0.5, 6.5±0.5 and 7.5±1.2 nm respectively. Our aim was 208 

to synthesize uniform-sized CdS QDs in order to effectively understand the structural effects of 209 

shell layering. Looking closely at each TEM micrograph, a uniform size distribution, embedded 210 

with a mixture of spherical and quasi-spherical shapes was observed. Thus, the monodispersed 211 

particle size distribution provides direct indication of homogenous nucleation and growth of the 212 

core QDs.  213 

Alloyed semiconductor QD nanocrystals can be grouped as having either a gradient internal 214 

structure derived from varying the alloy composition or a uniform internal structure ascribed to 215 

homogenous alloying. In our work, a fixed composition of the shell precursor was used to engineer 216 

the structure of the core/alloyed shell QDs. Fig. 2A-D shows the representative TEM images of 217 

CdS/AgZnSe core/alloyed shell QDs synthesized via method 1 with average particle sizes of 218 

5.1±0.6, 5.5±0.7, 7.9±1.6 and 9.1±1.9 nm respectively. The striking feature was the decrease in 219 

the core/alloyed shell QDs particle size relative to the core which is an unusual phenomenon as 220 

the size of the core/shell QDs is expected to increase after shell passivation. Since shell passivation 221 

of the 7.5 nm CdS QDs led to rapid nucleation and growth of the different sized CdS/AgZnSe 222 

QDs, it is imperative to suggest that either CdS was buried within the shell domain or an 223 

intermediate formation of CdS/CdSe occurred before the growth of CdS/AgZnSe QDs.  224 

As the CdS/AgZnSe QDs grew, a steady transformation in the particle morphology with respect 225 

to the size distribution was observed. The homogeneity of the particle reduced as the size 226 



increased, thus indicating that the QDs growth transitioned from an interfacial epitaxial 227 

homogenous state to a heterogeneous state. During the period of harvesting each of the different-228 

sized QDs, the temperature of the solution increased from ~240 – 310 °C and this should 229 

tentatively influence the nucleation and growth of the QDs. It is also noteworthy to emphasize that 230 

the transition in homogeneity of the QDs correlated significantly to the shape engineering of the 231 

particle. Looking closely at the TEM monograph of 7.9 nm and 9.1 nm-sized CdS/AgZnSe QDs 232 

(Fig. 2C and 2D), the emergence of trigonal-shaped particles was observed. Tentatively, we could 233 

attribute the shape engineering of the QDs to the passivating effect of AgZnSe shell, thus implying 234 

that the electronic structure of CdS/AgZnSe QDs led to different confinement levels for electron 235 

and hole. The hole may be strongly confined to the CdS core while the electron may be delocalised 236 

into the shell layer [40]. 237 

Three different sizes of CdS/AgZnSe QDs were harvested using method 2 synthetic route. The 238 

corresponding TEM images and particle size histograms are shown in Fig. 3. The particle size 239 

distribution revealed a prolate heterogeneous particle morphology, resembling an anisotropic-like 240 

growth pattern. The anisotropic growth pattern can be understood in terms of the reaction 241 

conditions used in the synthesis as it applies to low reactivity precursors and low volume of 242 

coordinating solvent. Under these reaction conditions, CdS/AgZnSe heteroepitaxial growth is 243 

kinetically controlled (i.e., AgZnSe formation at the surface is the rate-limiting step, rather than 244 

the precursor diffusion) and slow. Thus, the high reactivity of the Ag, Zn and Se of the AgZnSe 245 

shell layer will favour anisotropic-type growth [41]. 246 

Generally, the mechanism of nucleation and growth of CdS/AgZnSe QDs can be understood in 247 

terms of Ostwald ripening. At relatively low temperature (220–240 °C), Ostwald ripening 248 

dominated as a result of dissolution and surface energy of small particles which redissolve to allow 249 



subsequent growth of larger particles. At higher temperature (>260 °C), Brownian motion will 250 

increase in the synthetic system due to higher thermal energy. Hence it is more likely that the 251 

increase in motion will allow the particles to interact at the exact crystallographic orientation, 252 

leading to orientated attachment [42].  253 

 254 

3.2.2. Crystal phase analysis 255 

The crystal structure of CdS core and CdS/AgZnSe QDs was studied using PXRD. From the 256 

diffraction pattern of the CdS core (Fig 4), a pure zinc-blende crystal structure with three prominent 257 

peaks at planes {111}, {220} and {311} was observed. The three planes exhibited Bragg angles 258 

at 26.5°, 43.9° and 51.9° respectively. Comparison of the diffraction pattern of CdS/AgZnSe 259 

core/alloyed shell QDs with CdS QDs reveal notable differences. Firstly, the three-notable peaks 260 

(associated with zinc-blende crystal structure) present in CdS were observed in CdS/AgZnSe588. 261 

However, the appearance of four additional peaks between 30–40° and two additional peaks at 262 

higher Bragg angle (47.6° and 56.8°) provides direct evidence that the shell alloying process 263 

induced crystal phase changes in the QDs. Since the CdS/AgZnSe QDs size was tuned by fixed 264 

shell alloying, it is interesting to note the phase transition changes in the core/alloyed shell QDs. 265 

As the size of CdS/AgZnSe QDs increased, a steady transformation in the diffraction pattern as it 266 

relates to changes in the diffraction peaks was observed. A close assessment of the diffraction 267 

pattern of CdS/AgZnSe593, revealed detailed formation of a duplet peak at low Bragg angle which 268 

can be attributed to the steady phase transition from a zinc-blende diffraction pattern to a wurtzite 269 

diffraction pattern. Further growth of the core/alloyed shell QDs led to the formation of a triplet 270 

peak at low angle as observed from the diffraction pattern of CdS/AgZnSe599. Further assessment 271 

of the diffraction pattern of CdS/AgZnSe601 revealed the formation of a pure wurtzite diffraction 272 



pattern. Thus, is can be concluded that CdS core QDs favoured a zinc-blende crystal structure 273 

while the CdS/AgZnSe core-alloyed QDs kinetically favoured a phase change from a zinc-blende 274 

diffraction pattern to a wurtzite diffraction pattern. 275 

 276 

3.2.3. Raman analysis 277 

Core/shell QDs have been proven to reduce Auger recombination rates, which is important in 278 

multiexciton recombination and OFF/ON blinking process [43]. It is also believed that the 279 

core/shell interfacial alloying region is associated with a graded interface [44]. Hence, the potential 280 

of Raman to probe the internal structure of the core/alloyed shell QDs interface was investigated. 281 

Fig. 5 shows the Raman spectra for CdS core and the different-sized CdS/AgZnSe QDs. The 282 

similarities with reference to the peak position of CdS longitudinal optical phonon (LO) bulk 283 

frequency at ~300 cm-1 and CdS overtone at ~600 cm-1 with those of CdS/AgZnSe588 and 284 

CdS/AgZnSe93, provides strong indication of the homogenous growth of the core/alloyed shell 285 

QDs. For CdS/AgZnSe599 and CdS/AgZnSe601, we observed significant changes in the peak 286 

position when compared to the CdS core. Specifically, the peak position of CdS/AgZnSe599 287 

exhibited similar frequency to CdS LO frequency but the peak at the CdS overtone region was 288 

more blue-shifted in frequency. Conversely, the peak frequencies of CdS/AgZnSe599 relative to 289 

CdS LO and the overtone region were more red-shifted in comparison to the CdS core. The degree 290 

of frequency shift in CdS/AgZnSe599 and CdS/AgZnSe601 peak position relative to CdS can be 291 

understood in terms of the growth morphology and the degree of interfacial defect states in the 292 

QDs. Thus, the frequency shift and strain relaxation in the core/alloyed shell interface will differ 293 

due to the QDs size and shell thickness. The relatively less-pronounced peaks below 220 cm-1 for 294 

the core/alloyed shell QDs can be ascribed to a surface optical phonon feature which is inherent in 295 



finite sized crystals and also from the varying degree of alloying at the interface between CdS core 296 

and AgZnSe shell [45,46]. The variation in the intensity of the modes below 220 cm-1 could 297 

probably also account for the differences in alloying efficiency of the AgZnSe shell relative to the 298 

CdS core.  299 

 300 

3.3. Optical properties  301 

The QDs surface is influenced by the nature and chemical reaction of the synthetic constituents 302 

(surfactants, capping ligands and solvents) used in fabricating its structure. The atomistic effects 303 

of these constituents form the basis for assessing the quality of the QDs surface as it relates to the 304 

optical properties, such as the PL stability, spectral features and PL QY. The formation of midgap, 305 

deep and shallow states as surface traps provides the basis to which nonradiative electron-hole 306 

recombination degrades the QDs fluorescence. The suppression or total elimination of surface trap 307 

states in core QDs via coating of a shell layer is useful for light-associated applications and it 308 

provides a platform for better understanding of synthetic fabrication strategies required to 309 

construct high-quality QD nanocrystals. Our objective is to investigate the influence of a new shell 310 

layer (AgZnSe) on the luminescent properties of colloidal CdS QDs. We have utilized the shell 311 

alloying process to unravel how the QDs band gap and synthetic fabrication strategy influences 312 

the PL properties of CdS/AgZnSe core/alloyed shell QDs. The PL QY was determined according 313 

to the equation: 314 

 315 

ΦF
QD = ΦF

Std
F𝑄𝐷𝑠.ODStd(λexc).n

2
water

F𝑆𝑡𝑑.ODQD(λexc)
.nethanol
2                                                                                       (1) 316 

 317 



Where ΦF
Std is the PL quantum yield of rhodamine 6G standard in ethanol (Φ = 0.95); F𝑆𝑡𝑑 and F𝑄𝐷𝑠 318 

are the integrated sum of the fluorescence intensity of the standard and QDs;  ODQD(λexc) and ODStd(λexc) 319 

are the optical densities of the QDs and standard while nethanol
2  and n2water are the refractive indices of 320 

ethanol and water used to prepare the standard and QDs respectively. 321 

Fig. 6A and B shows the evolution of the PL emission and absorption spectra of three different-322 

sized CdS core QDs and Table 1 summarizes the corresponding photophysical properties as they 323 

relate to the absorption wavelength maximum, full width at half maximum (FWHM), band gap 324 

and PL QY. We harvested three-sized CdS core QDs with the sole aim of assessing their optical 325 

properties in comparison to the different-sized CdS/AgZnSe core/alloyed shell QDs. A small red 326 

shift in PL emission was observed for the harvested different-sized CdS core QDs with the 327 

absorption wavelength maximum and FWHM increasing in relation to the core size. The striking 328 

feature is the low PL QY which was increasingly tuned from 4 to 16% and also dependent on each 329 

core size. We observed that CdS471 produced the highest PL QY of 16% while the lowest PL QY 330 

value of 4% was exhibited by CdS478. Based on the relatively low PL QY, CdS core QDs suffers 331 

significantly from interfacial surface defects and residual strain in which the degree of defect states 332 

depends on the core size. 333 

To effectively understand the effect of ternary AgZnSe shell alloying on the PL properties of CdS 334 

QDs, we employed two synthetic fabrication strategies. The most obvious and direct evidence of 335 

shell alloying comes from the PL emission and absorption spectra shown in Fig. 6C. The evolution 336 

of the PL emission of CdS/AgZnSe QDs synthesized via method 1 was tuned from 588 to 601 nm 337 

while the absorption spectra (Fig. 6D) was tuned from 464 nm to 477 nm. AgZnSe shell precursors 338 

used in method 1 synthesis of CdS/AgZnSe QDs was added into the growth solution after 339 

harvesting fraction of CdS481 core QDs. The striking feature is the blue-shifted absorption 340 



wavelength and corresponding red shift in PL emission of CdS/AgZnSe588 relative to CdS481 QDs. 341 

The shift reveals that the shell alloying strategy, induced bad gap modulation of the QDs in the 342 

visible region of the electromagnetic spectrum. For CdS/AgZnSe QDs synthesized via method 2, 343 

the PL emission spectra was tuned from 591 to 612 nm (Fig. 7A) while the absorption spectra were 344 

tuned from 449 to 481 (Fig. 7B). Despite the PL emission being more red-shifted relative to the 345 

CdS core, the absorption spectrum of CdS/AgZnSe591 was significantly blue-shifted. From Table 346 

1, the efficiency of band gap modulation of CdS/AgZnSe QDs was observed to vary narrowly 347 

from 2.07–2.11 eV for method 1 synthesis and from 2.03–2.10 eV for method 2 synthesis of the 348 

QDs.  349 

To determine if the band gap modulation of CdS/AgZnSe QDs originated from the intrinsic optical 350 

properties of the core/alloyed nanostructures, a deeper assessment of the PL QY values (Table 1) 351 

was performed. The most striking observation is the variation in the PL QY of CdS/AgZnSe QDs 352 

synthesized via method 1 and 2 and the remarkable increase in comparison to the values obtained 353 

for CdS core. Via method 1 synthesis, the PL QY of CdS/AgZnSe QDs was tuned from 48 to 51% 354 

but via method 2 synthesis the PL QY was tuned from 35 to 73%. It is noteworthy that shell 355 

alloying of CdS QDs suppressed interfacial defect states in the core/alloyed shell nanocrystals due 356 

to the remarkable increase in the PL QY. However, it is important to emphasize that the defect 357 

state suppression efficiency varied amongst the QDs size and was dependent on the quality of the 358 

fabrication method. 359 

Examining closely how the shell alloying process influenced the optical properties of the QDs, we 360 

have probed the correlation between the band gap modulation and the PL QY. It is a well-361 

established phenomenon that a semiconductor band gap can be reduced by residual strain, thus 362 

leading to deformed potential [47,48]. Therefore, the low PL QY reveals that CdS core QDs suffer 363 



from residual strain due to surface traps embedded within the nanocrystals. The narrow band gap 364 

(2.07–2.11 eV) exhibited by the different-sized CdS/AgZnSe QDs (synthesized via method 1), 365 

correlated precisely to the small difference in PL QY (48-51%). This suggests that suppression of 366 

surface defect states in CdS QDs was with a very small margin across the core/alloyed shell QDs 367 

size. However, a wider margin in defect state suppression was observed for CdS/AgZnSe QDs 368 

synthesized via method 2, due to the wider difference in PL QY from 35% to 73%. Two important 369 

features are the maximum PL QY of 73% and the precise correlation in the margin of difference 370 

between the band gap and the PL QY. It is also noteworthy that the high PL QY implies much of 371 

the surface defects were suppressed by the shell alloying process while the variation in PL QY 372 

correlated precisely to the efficiency of surface defect suppression. 373 

 374 

4. Conclusions 375 

The passivation of CdS QDs with a new ternary alloyed AgZnSe shell layer was obtained via the 376 

organometallic synthetic route. The band gap of CdS/AgZnSe core/alloyed shell QDs was tuned 377 

across the visible region with the nanocrystals exhibiting varying PL QYs. We observed a precise 378 

correlation in the margin of difference between the band gap of the QDs and the PL QY. The effect 379 

of shell alloying was observed in the QDs growth morphology in which the QDs growth 380 

transitioned from a homogeneous state to a heterogeneous state. Transition in the phase structure 381 

of the QDs from a zinc blende diffraction pattern to a wurtzite diffraction pattern was also 382 

observed. Generally, we have established that AgZnSe shell passivation on luminescent CdS QDs 383 

suppressed interfacial defect states in the CdS core QDs with the degree of suppression dependent 384 

on the size of the QDs derived from the finely-tuned synthetic fabrication strategy. 385 

 386 
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Table 1. Summary of the photophysical properties of the different-sized CdS core and 522 

CdS/AgZnSe QDs. 523 

QDs-λEmi (nm) λAbs (nm) FWHM (nm) Band gap (eV) PL QY (%) 

CdS471 458 20 2.64 16 

CdS478 471 26 2.60 4 

CdS481 476 33 2.58 8 

aCdS/AgZnSe588 464 41 2.11 48 

bCdS/AgZnSe591 449 34 2.10 73 

aCdS/AgZnSe593 468 42 ~2.10 50 

aCdS/AgZnSe599 473 40 2.07 49 

aCdS/AgZnSe601 477 45 ~2.07 51 

bCdS/AgZnSe602 473 39 2.06 35 

bCdS/AgZnSe612 481 40 2.03 42 

a Method 1 synthesis 524 

b Method 2 synthesis 525 

 526 
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 528 

 529 

 530 

 531 



 532 

 533 

 534 

Fig. 1. TEM images (A, B and C) and average particle size distribution (A1, B1 and C1) of CdS 535 

core QDs. 536 
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 538 
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 541 

Fig. 2. TEM images (A, B, C and D) and average particle size distribution (A1, B1, C1 and D1) 542 

of CdS/AgZnSe core/alloyed shell QDs synthesized via method 1. 543 
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 557 

 558 

Fig. 3. TEM images (A, B and C) and average particle size distribution (A1, B1 and C1) of 559 

CdS/AgZnSe core/alloyed shell QDs synthesized via method 2. 560 



 561 

Fig. 4. PXRD plots of CdS, CdS/AgZnSe588, CdS/AgZnSe593, CdS/AgZnSe599 and CdS/AgZnS601 562 

QDs. 563 
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 572 

Fig. 5. Raman spectra of CdS, CdS/AgZnSe588, CdS/AgZnSe593, CdS/AgZnSe599 and 573 

CdSe/AgZnS601 QDs. 574 
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 582 

Fig. 6. PL and UV/vis absorption spectra of the different sized CdS (A and B) and CdS/AgZnSe 583 

core/alloyed shell QDs (C and D) synthesized via method 1. 584 
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 590 

Fig. 7. PL (A) and UV/vis absorption (B) spectra of the different sized and CdS/AgZnSe 591 

core/alloyed shell QDs synthesized via method 2. 592 

 593 

 594 

 595 

 596 

 597 

 598 

 599 

 600 

 601 

 602 

 603 

 604 


