570 research outputs found

    What drives the valuation of entrepreneurial ventures? A map to navigate the literature and research directions

    Get PDF
    The drivers of the valuations of entrepreneurial ventures are an important issue in entrepreneurial finance, but related research is fragmented. The theoretical perspectives and the drivers highlighted by previous studies differ based on the financial milestones during a venture's lifecycle in which the valuation is performed (e.g., venture capital investments, initial public offerings, acquisitions). The introduction of new digital financing channels (e.g., crowdfunding, initial coin offerings) that allow retail investors to directly invest in entrepreneurial ventures challenge our understanding of the drivers of valuation. This change has also increased the diversity in the sequence of financial milestones that ventures go through, with important implications for valuation. We conduct a systematic literature review and develop a map highlighting how and why the drivers of venture valuations and their underlying theoretical lenses vary across the different milestones that ventures go through. The map allows us to outline new promising avenues for future research.Plain English Summary In this paper, we conduct a systematic literature review on entrepreneurial ventures' valuation drivers and their underlying theoretical lenses, highlighting how and why they vary along firms' life cycle. The valuation of entrepreneurial ventures is a challenging task for practitioners and a relevant issue that attracts the attention of scholars in entrepreneurship, finance, management, and economics. The literature on the topic is highly fragmented. Indeed, the context in which venture valuations are observed (e.g., in private deals or public offerings) differs across different financial milestones. The introduction of new digital financing channels (e.g., crowdfunding, initial coin offerings) and the increased diversity in the sequence of financial milestones that ventures go through further challenge our understanding of valuation drivers. This study is primarily aimed at scholars, offering them a map to create order in what we know about the drivers of entrepreneurial venture valuations and indicating promising avenues for future research

    Alkali-activation of marble sludge: Influence of curing conditions and waste glass addition

    Get PDF
    The use of marble sludge as precursor for new alkali activated materials was assessed studying three different curing conditions (air, humid and water immersion, respectively), after an initial curing at 60 °C for 24 h, and two glass powder fractions additions (2.5 and 5.0 vol%). Microstructural, physical (drying shrinkage, Fourier transform-infrared (FT-IR) spectroscopy, X-ray spectroscopy (XPS)), thermal (differential thermal analysis – thermogravimetric analysis, DTA-TGA) and mechanical (flexural and compressive strength) properties were investigated. Air curing was the most favourable atmosphere for mechanical properties development because it promotes Si-O-Si polymerization and gel densification, as demonstrated by FT-IR and FE-SEM observations, respectively. Satisfactory mechanical properties were achieved (18 MPa and 45 MPa, for flexural and compressive strength, respectively) in particular for glass containing mixtures. Moreover, glass powder addition significantly reduced drying shrinkage of air-cured samples because it operated as a rigid aggregate in the matrix and strengthened the formed gel

    Architecture framework of IoT-based food and farm systems: A multiple case study

    Get PDF
    The Internet of Things (IoT) is expected to be a real game changer in food and farming. However, an important challenge for large-scale uptake of IoT is to deal with the huge heterogeneity of this domain. This paper develops and applies an architecture framework for modelling IoT-based systems in the agriculture and food domain. The framework comprises a coherent set of architectural viewpoints and a guideline to use these viewpoints to model architectures of individual IoT-based systems. The framework is validated in a multiple case study of the European IoF2020 project, including different agricultural sub sectors, conventional and organic farming, early adopters and early majority farmers, and different supply chain roles. The framework provides a valuable help to model, in a timely, punctual and coherent way, the architecture of IoT-based systems of this diverse set of use cases. Moreover, it serves as a common language for aligning system architectures and enabling reuse of architectural knowledge among multiple autonomous IoT-based systems in agriculture and food

    Multifunctional peri-urban agriculture: Some ecosystem services of a sustainable olive grove

    Get PDF
    This study reports the influence of a sustainable management model which entails the recycling of urban wastewater and distribution by drip irrigation, recycling of polygenic carbon sources internal to the olive orchard (cover crops, pruning material) on yield, soil water holding capacity, soil biodiversity. Sustainable management practices were applied for a 15-year period in a 2-ha olive orchard located in an hilly peri-urban zone of southern Italy, where olive tree represents the dominant crop and has a key role inside the traditional landscape. A comparison between sustainable and conventional management (soil tillage, burning of the pruning residues, mineral fertilization, empirical irrigation) was carried out. This study suggests some guidelines of a sustainable management of peri-urban olive groves, with benefits to the whole agro-ecosystem stability and to the near town, recognizing the multifunctional role of agriculture that enhances the creation of synergies between urban and rural areas

    Indocyanine green (ICG) fluorescent cholangiography during laparoscopic cholecystectomy using RUBINAâ„¢ technology: preliminary experience in two pediatric surgery centers

    Get PDF
    Background: Recently, we reported the feasibility of indocyanine green (ICG) near-infrared fluorescence (NIRF) imaging to identify extrahepatic biliary anatomy during laparoscopic cholecystectomy (LC) in pediatric patients. This paper aimed to describe the use of a new technology, RUBINA™, to perform intra-operative ICG fluorescent cholangiography (FC) in pediatric LC. Methods: During the last year, ICG-FC was performed during LC using the new technology RUBINA™ in two pediatric surgery units. The ICG dosage was 0.35 mg/Kg and the median timing of administration was 15.6 h prior to surgery. Patient baseline, intra-operative details, rate of biliary anatomy identification, utilization ease, and surgical outcomes were assessed. Results: Thirteen patients (11 girls), with median age at surgery of 12.9 years, underwent LC using the new RUBINA™ technology. Six patients (46.1%) had associated comorbidities and five (38.5%) were practicing drug therapy. Pre-operative workup included ultrasound (n = 13) and cholangio-MRI (n = 5), excluding biliary and/or vascular anatomical anomalies. One patient needed conversion to open surgery and was excluded from the study. The median operative time was 96.9 min (range 55–180). Technical failure of intra-operative ICG-NIRF visualization occurred in 2/12 patients (16.7%). In the other cases, ICG-NIRF allowed to identify biliary/vascular anatomic anomalies in 4/12 (33.3%), including Moynihan's hump of the right hepatic artery (n = 1), supravescicular bile duct (n = 1), and short cystic duct (n = 2). No allergic or adverse reactions to ICG, post-operative complications, or reoperations were reported. Conclusion: Our preliminary experience suggested that the new RUBINA™ technology was very effective to perform ICG-FC during LC in pediatric patients. The advantages of this technology include the possibility to overlay the ICG-NIRF data onto the standard white light image and provide surgeons a constant fluorescence imaging of the target anatomy to assess position of critical biliary structures or presence of anatomical anomalies and safely perform the operation

    Management options influence seasonal CO2 soil emissions in Mediterranean olive ecosystems

    Get PDF
    Field trials were conducted at traditional Mediterranean olive agro-ecosystems grown at two locations (Italy –IT, Greece –GR). Groves were managed for many years using sustainable (S, cover crops, compost application, mulching of pruning biomass) or conventional (C) practices (e.g., soil tillage, burning of pruning residuals). The IT grove was rainfed (RAIN) while the GR was irrigated (IRR). This study examined the seasonal variation of soil CO2 emission (Rs) to explore the effect of the management options (C, S) on Rs at both sites. The second aim was to test the hypothesis that the seasonal Rs is differentially modulated by soil temperature and moisture, namely that (i) soil moisture limits Rs when it is below the lower limit of the readily available water (RAWLLim) and (ii) soil temperature above a threshold (max_T) reduces Rs even if soil moisture is non limiting. On the whole-season basis, the mean Rs rate at the rainfed site was 2.17 ± 0.06 (SE) at CRAIN and 2.32 ± 0.06 μmol CO2 m−2 s–1 at SRAIN plot, while at the irrigated site Rs was about 3.64 ± 0.11 (CIRR) and 4.05 ± 0.15 μmol CO2 m−2 s–1 (SIRR). The seasonal oscillation of Rs was consistent across locations and partitionable in three periods according to DOY (Day of Year) interval: Phase I (DOY 20–103 –GR; 20–118 -IT), Phase II (DOY 141÷257, GR; 142–257, IT) and Phase III (DOY 291–357, GR; 286–350, -IT). Pooling all the Rs data across sites and managements, max_T was ∼ 20 °C discriminating a differential response of Rs when soil moisture was < or > RAWLLim. These differential modulations exerted by temperature and moisture were integrated into a conditional model developed with a repeated random subsampling cross-validation procedure to effectively (R2 = 0.84) predict Rs. This paper mechanistically describes the interaction of the environment (soil moisture and temperature) and the management options (S, C) under various moisture conditions on Rs and would support carbon flux accounting procedures (e.g., regulating ecosystem services) tailored to the estimation of sink/source capability of traditional olive agro-ecosystem within environmental-friendly agricultural domains

    Weak multiplicativity for random quantum channels

    Full text link
    It is known that random quantum channels exhibit significant violations of multiplicativity of maximum output p-norms for any p>1. In this work, we show that a weaker variant of multiplicativity nevertheless holds for these channels. For any constant p>1, given a random quantum channel N (i.e. a channel whose Stinespring representation corresponds to a random subspace S), we show that with high probability the maximum output p-norm of n copies of N decays exponentially with n. The proof is based on relaxing the maximum output infinity-norm of N to the operator norm of the partial transpose of the projector onto S, then calculating upper bounds on this quantity using ideas from random matrix theory.Comment: 21 pages; v2: corrections and additional remark

    Ultra-high-field MR imaging in polymicrogyria and epilepsy

    Get PDF
    BACKGROUND AND PURPOSE: Polymicrogyria is a malformation of cortical development that is often identified in children with epilepsy or delayed development. We investigated in vivo the potential of 7T imaging in characterizing polymicrogyria to determine whether additional features could be identified. MATERIALS AND METHODS: Ten adult patients with polymicrogyria previously diagnosed by using 3T MR imaging underwent additional imaging at 7T. We assessed polymicrogyria according to topographic pattern, extent, symmetry, and morphology. Additional imaging sequences at 7T included 3D T2* susceptibility-weighted angiography and 2D tissue border enhancement FSE inversion recovery. Minimum intensity projections were used to assess the potential of the susceptibility-weighted angiography sequence for depiction of cerebral veins. RESULTS: At 7T, we observed perisylvian polymicrogyria that was bilateral in 6 patients, unilateral in 3, and diffuse in 1. Four of the 6 bilateral abnormalities had been considered unilateral at 3T. While 3T imaging revealed 2 morphologic categories (coarse, delicate), 7T susceptibility-weighted angiography images disclosed a uniform ribbonlike pattern. Susceptibility-weighted angiography revealed numerous dilated superficial veins in all polymicrogyric areas. Tissue border enhancement imaging depicted a hypointense line corresponding to the gray-white interface, providing a high definition of the borders and, thereby, improving detection of the polymicrogyric cortex. CONCLUSIONS: 7T imaging reveals more anatomic details of polymicrogyria compared with 3T conventional sequences, with potential implications for diagnosis, genetic studies, and surgical treatment of associated epilepsy. Abnormalities of cortical veins may suggest a role for vascular dysgenesis in pathogenesis
    • …
    corecore