17 research outputs found

    Chemical Variability and Biological Activities of Volatile Oils from Hyptis suaveolens (L.) Poit.

    Get PDF
    Hyptis suaveolens (L.) Poit. belongs to the Lamiaceae family and is widely used in folk medicine in various countries. Th e essential oils from H. suaveolens have been extensively investigated and are mainly composed of monoterpenes and sesquiterpenes, although significant diterpene content has been reported in recent studies. The survey of the literature concerning H. suaveolens essential oils revealed a high level of chemical variability in terms of quantity and composition that is commonly observed for volatile oils from other plant species. However, few researchers have dealt with the reasons for such chemical variability. Our research group has been investigating the relationships between growing conditions of the plants and the H. suaveolens (L.) Poit. essential oil composition. The results of these investigations have led to some advances in the characterization and knowledge of H. suaveolens chemotypes from Brazil. Nevertheless, since this species presents high level of genetic polymorphism and allows it to adapt to the alterations in environmental features resulting in interpopulational and intrapopulational variability in the volatile oil chemical compositions. Consequently, biochemical assays on the biosynthetic pathway are required in order to detect the molecular mechanisms involved in inducing differential terpenoid biosynthesis within H. suaveolens. These are some of the challenges which require resolution leading to an understanding of the complex secondary metabolism of this species, thereby making possible the volatile oil chemical standardization seeking productivity and phytotherapy

    Chemical composition and biological activities of the essential oils from Anacardiaceae, Siparunaceae and Verbenaceae species

    No full text
    Determinou-se a composição química dos óleos essenciais das Verbenaceae: Aloysia virgata (Ruiz & Pav.) Pers., Lippia brasiliensis (Link) T. Silva, Lippia sp., Lantana camara L., Lantana trifolia L. e Lantana montevidensis (Spreng.) Briq. Os óleos essenciais foram extraídos por hidrodestilação em aparelho tipo Clevenger e suas constituições químicas foram determinadas por cromatografia gasosa acoplada à espectrometria de massas. Foi avaliada a atividade antimicrobiana desses os óleos. Observou-se que os óleos essenciais das espécies Aloysia virgata, Lippia brasiliensis, Lippia sp., Lantana camara, Lantana trifolia e Lantana montevidensis, coletadas em Minas Gerais, possuem constituição química variada e compostas em grande parte por substâncias sesquiterpênicas. É possível observar um padrão referente às concentrações relativas dos constituintes majoritários em relação aos gêneros das plantas estudadas. As plantas do gênero Lippia apresentam maior concentração de (E)-cariofileno que de germacreno-D, enquanto as plantas dos gêneros Lantana e Aloysia apresentam maior concentração de germacreno-D em relação ao (E)-cariofileno. Observa-se também que o óleo da espécie Lippia brasiliensis possui ligeira alteração de constituição ao longo das estações, apresentando maiores concentrações de constituintes oxigenados durante o período frio e seco do ano. Para as espécies Lippia brasiliensis, Lantana camara e Lantana trifolia, os óleos extraídos das flores apresentam maiores concentrações de constituintes monoterpênicos que os óleos extraídos das folhas. O óleo extraído das folhas da espécie Lantana camara não apresentou atividade contra as bactérias estudadas. Os óleos extraídos das folhas das espécies Aloysia virgata, Lippia brasiliensis, Lantana trifolia e Lantana montevidensis apresentaram atividade moderada contra as cepas de bactérias Gram-positivas B. cereus e S. aureus. Apenas o óleo extraído das folhas da espécie A. virgata foi ativo contra a bactéria Gramnegativa E. coli. Para os óleos extraídos das Anacardiaceae Anacardium humile Engl., Anacardiumoccidentale L., Astronium fraxinifolium Schott ex Spreng., Myracrodruon urundeuva Allemão, e Schinus terebinthifolius Raddi, observou-seque as constituições químicas foram bastante distintas. Os óleos das espécies A. humile e A. occidentale não apresentaram atividade contra as bactérias estudadas. Os óleos das espécies A. fraxinifolium, M. urundeuva e S. terebinthifolius apresentaram atividades moderadas contras as cepas de bactérias utilizadas. A época de coleta da espécie S. terebinthifolius altera a atividade antibacteriana do óleo essencial extraído de suas folhas. Os óleos das espécies A. fraxinifolium, M. urundeuva e S. terebinthifolius, e o monoterpeno δ-3-careno provocam aumento na peroxidação de lipídeos emcélulas de bactérias. A atividade antibacteriana do óleo de M. urundeuvapode estar relacionada com a alta concentração do monoterpeno δ-3-careno. Os teores obtidos no período de maio de 2009 a maio de 2010 para o óleo essencial de Siparuna guianensis permaneceram entre 4,5 e 7,0%. O período de menor rendimento do óleo, setembro a novembro, é coincidente com o período fenológico em que as plantas passam por uma desfolha natural drástica. Dois constituintes, o monoterpeno α-terpinoleno e o álcool sesquiterpênico α-bisabolol, representaram, em conjunto, cerca de 80% do óleo durante todo o ano. Em geral, o composto α-bisabolol promoveu maiores zonas de inibição das bactérias E. coli, B. cereus e S. aureus, que o óleo essencial. As concentrações inibitórias mínimas (CIM) demonstram que o óleo de S. guianensis e o padrão comercial de α-bisabolol inibiram o crescimento das cepas de bactérias testadas em concentrações expressivamente baixas (8 – 63 μg mL-1). O acúmulo de aldeído malônico (MDA) indica que os danos pró-oxidantes, que resultam na peroxidação de lipídeos, estão provavelmente relacionados como os mecanismos de ação antibacteriana destes óleos essenciais. A CIM contra os fungos Candida albicans, Criptococcus neoformans, Trychophyton rubrum e Aspergillus fumigatus indicam que o óleo de S. guianensis inibiu o crescimento das cepas de fungos em concentrações reduzidas, principalmente para o fungo Criptococcus neoformans (16 μg mL-1). Os óleos das espécies A. fraxinifolium, M. urundeuva e S. terebinthifolius apresentaram atividades fitotóxica contra o crescimento inicial das radículas de sorgo e pepino. A ação fitotóxica do óleo de M. urundeuva pode estar relacionada com a alta concentraçãodo monoterpeno δ-3-careno. O acúmulo de aldeído malônico (MDA) nas radículas de pepino e cebola indicam que os óleos e o monoterpeno δ-3-careno promoveram aumento da peroxidação de lipídeos. Os níveis de peroxidação foram semelhantes para os óleos e o padrão de δ-3-careno nas radículas de pepino, porém, para radículas de cebola, os óleos essenciais apresentaram efeito superior ao monoterpeno.Chemichal Composition and Antibacterial activity of Verbenaceae Essential Oils: Alternative sources of (E)-Caryophyllene and Germacrene-D. Essential oils from the leaves of Verbenaceae species Aloysia virgata, Lantana camara, Lantana trifolia, Lantana montevidensis, Lippia brasiliensis and Lippia spp., were investigated for its chemical composition and antibacterial activity. The volatile oils were characterized by a high content of sesquiterpenes of which (E)-caryophyllene (10-35%), germacrene-D (5-46%) and bicyclogermacrene (7-17%) were the major components for all studied species. For the flowers, a higher concentration of monoterpenes was observed for the species L. camara, L. trifolia and L. brasiliensis, probably working as attractive to specific pollinators. The oil from A. virgata was the most active, exhibiting high antimicrobial activity against the bacteria Staphylococcus aureus, Bacillus cereus and Escherichia coli. Chemical Composition and Antibacterial Activity of Anacardiaceae Essential Oils: Lipid Peroxidation on Bacterial Cell. The chemical composition and the antibacterial activity against Gram-positive and Gram-negative foodborne bacteria were assessed for the essential oils from five Anacardiaceae species. The major constituents in Anacardium humile leaves oil are (E)-caryophyllene (31%), α-pinene (22%) and bicyclogermacrene (7.6%). The major compounds identified for the Anacardium occidentale oil were (E)-caryophyllene (15.4%), germacrene-D (11.5%) and α-copaene (10.3%). A. fraxinifolium leaves essential oil presented (E)-β-ocimene (44.1%), α-terpinolene (15.2%) and viridiflorene (9.0%) as major constituents. Myracrodruon urundeuva presented δ-3-carene at 78.8%. S. terebinthifolius leaves oil collected in March and July presented different chemical composition. The oil of all tested species, except A. occidentale, exhibited varying levels of antibacterial activity against Staphylococcus aureus, Bacillus cereus and Escherichia coli. S. terebinthifolius oil extracted in July was more active against all bacterial strains than the oil extracted in March. M. urundeuva oil showed great antibacterial activity and it may be related to the high concentration of δ-3-carene. The amounts of malondihaldeyd (MDA) in bacterial cells indicate that essential oils promote lipid peroxidation. The results suggest that prooxidant damages on cell membrane should play important role in the mechanism of antibacterial action of these natural compounds. The study of its mechanism of action becomes an outstanding issue for further studies. The levels obtained during the period May 2009 to May 2010 for the essential oil Siparuna guianensis remained between 4.5 and 7.0%. The period of lower oil yield, from September to November, is coincident with the phenological period in which the plants undergo a dramatic natural defoliation. Two components, the monoterpene α-terpinolene and α-bisabolol, bisabolol alcohol, together accounted about 80% of the oil throughout the year. In general, the compound α-bisabolol promoted larger zones of inhibition of the bacteria E. coli, B. cereus and S. aureus, the essential oil. The minimum inhibitory concentrations (MIC) show that the oil of S. guianensis and trade pattern of α- bisabolol inhibited the growth of bacterial strains tested at concentrations significantly lower (8-63 mg mL-1). The accumulation of malondialdehyde (MDA) shows that the damage pro-oxidants, which result in lipid peroxidation, are probably related to the mechanisms of antibacterial action of essential oils. The MIC against fungi Candida albicans, Cryptococcus neoformans, Aspergillus fumigatus Trychophyton rubrum and indicate that the oil of S. guianensis inhibit the growth of fungal strains in low concentrations, especially for the fungus Cryptococcus neoformans (16 mg mL-1). The essential oils from A. fraxinifolium, M. urundeuva e S. terebinthifolius showed phytotoxic activity against the initial growth of radicles of cucumber and sorghum. The phytotoxic action of the oil of M. urundeuva may be related to the high concentration of monoterpene δ-3-carene. The accumulation of malondialdehyde (MDA) in radicles of cucumber and onion oils indicate that monoterpene and δ-3-carene promoted increased lipid peroxidation. Peroxidation levels were similar for the oils and the pattern of δ-3-carene in the radicles of cucumber, but for onion root tips, essential oils showed a superior effect to monoterpene.Coordenação de Aperfeiçoamento de Pessoal de Nível Superio

    Respiration activity and antioxidative metabolism in roots of maize (Zea mays L.) seedlings submitted to salt stress

    No full text
    A sensibilidade ao estresse salino foi avaliada em plântulas de milho (Zea mays L.) das cultivares AGN 3150, BR 106, BR 201, BR 206 e SHS 4040, cultivadas em solução nutritiva de Hoagland. Os tratamentos com 50 e 100 mM de NaCl reduziram a produção de biomassa e aumentaram o extravasamento relativo de eletrólitos nas raízes e nas partes aéreas de todas as cultivares estudadas. Porém, os maiores valores de redução no crescimento e de extravasamento de eletrólitos foram apresentados pela cultivar BR 106 e os menores valores observados na cultivar AGN 3150. Portanto, entre as cultivares avaliadas, estas duas foram consideradas, respectivamente, como a mais sensível e a mais tolerante ao estresse salino. Verificou-se, então, o efeito do tratamento com 100 mM de NaCl sobre alguns componentes do metabolismo antioxidativo e sobre a respiração mitocondrial nas raízes de plântulas dessas duas cultivares. A cultivar tolerante apresentou aumento nas atividades das enzimas dismutase do superóxido (SOD), peroxidase do ascorbato (APX) e redutase da glutationa (GR), bem como aumento na razão ascorbato/desidroascorbato. A cultivar sensível apresentou redução na atividade das catalases (CAT) e GR, e também da razão ascorbato/desidroascorbato. O grau de peroxidação de lipídeos aumentou nas raízes e nas mitocôndrias isoladas, apenas na cultivar sensível. Nas mitocôndrias isoladas da cultivar tolerante, o tratamento com NaCl resultou em aumento na taxa respiratória no estado 4 e na capacidade da rota alternativa. Além disso, houve redução nas razões ADP/O e de controle respiratório, indicando um menor grau de acoplamento, possivelmente resultante da maior atividade da oxidase alternativa (AOX) na cultivar tolerante. Na cultivar sensível, a atividade respiratória total e a razão ADP/O foram fortemente reduzidas, porém a participação percentual da rota alternativa não foi alterada. O tratamento com NaCl resultou em redução na atividade da proteína desacopladora (UCP) na cultivar tolerante e em aumento desta atividade na cultivar sensível. Pelos dados obtidos, a maior tolerância da cultivar AGN 3150 está relacionada à sua maior eficiência na remoção de intermediários reativos de oxigênio, além da maior possibilidade de desvio de elétrons pela sua rota alternativa na cadeia respiratória. Entretanto, a contribuição da UCP nos mecanismos de tolerância à salinidade dessa cultivar não foi evidenciada.Tolerance to salt stress was studied in maize seedlings (Zea mays L.) cultivars AGN 3150, BR 106, BR 201, BR 206 and SHS 4040, grown in Hoagland s nutrient solution. Treatments with NaCl 50 and 100 mM led to a decrease in the biomass production and to an increase in the relative electrolyte leakage in the roots and shoots in all cultivars. However, the largest decrease in growth and electrolyte leakage were shown by cultivar BR 106 and the smallest ones by cultivar AGN 3150, lead them to be considered as the most sensitive and the most tolerant to salt stress, respectively. The effect of NaCl 100 mM was investigated by considering some components of the antioxidative metabolism and mitochondrial respiration in roots of the seedlings. The tolerant cultivar showed increased activities of the enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione redutase (GR), as well as increase in ascorbate/dehydroascorbate ratio. The sensitive cultivar showed reduction in catalases (CAT) and GR activities as well as in ascorbate/dehydroascorbate ratio. The lipid peroxidation degree increased in roots and isolated mitochondria, only in the sensitive cultivar. In mitochondria isolated from the tolerant cultivar, NaCl treatment promoted an increase in the state 4 respiration rate and in the alternative pathway capacity. Additionally, salinity promoted a decrease in ADP/O and respiratory control ratios, indicating a lower coupling, likely due to an increase in alternative oxidase (AOX) activity. In sensitive cultivar, total respiration activity and the ADP/O ratio were strongly decreased, however the capacity of the alternative pathway was not altered. The NaCl treatment promoted decrease in the uncoupling protein (UCP) activity in the tolerant cultivar, but an increase it in the sensitive one occurred. These results suggest that the tolerant cultivar exhibits a larger efficiency in the reactive oxygen intermediates scavenging, as compared to the sensitive one. In addition, the high tolerance of cultivar AGN 3150 to the salt stress could be related to its high AOX capacity. A possible contribution of the UCP could not be confirmed from the results observed.Coordenação de Aperfeiçoamento de Pessoal de Nível Superio

    Activity of essential oil of Lippia triplinervis Gardner (Verbenaceae) on Rhipicephalus microplus (Acari: Ixodidae)

    No full text
    The objective of this work was to characterize and investigate the acaricidal activity of the essential oil of the aerial parts of Lippia triplinervis at different concentrations on unengorged larvae and engorged females of Rhipicephalus microplus. The essential oil yielded 2.21 % (w/w to dry matter) and was composed mainly of carvacrol (31.9 %), thymol (30.6 %), and p-cymene (12.3 %). Two tests were performed to assess the acaricidal activity: the modified larval packet test, with concentrations of 2.5, 5.0, 10.0, 15.0, and 20.0 mg/mL and the female immersion test, with concentrations of 10.0, 20.0, 30.0, 40.0, and 50.0 mg/mL. There were ten repetitions for each concentration, and for each test, a control group was formed in which the ticks were treated with Tween 80 (20 mg/mL). The experimental groups were kept in a climate-controlled chamber (27 ± 1 °C and RH >80 %). The mortality of the larvae was above 95 % in all the groups tested and reached 100 % as of the 5.0 mg/mL concentration, while the control group exhibited 0 % mortality. In the female immersion test, there was a significant decline (p < 0.05) in the egg mass weight, egg production index, and hatching percentage starting at the concentration of 30.0, 40.0, and 20.0 mg/mL, respectively, and the control percentage at the concentrations of 40.0 and 50.0 mg/mL were above 90 and 95 %. The L. triplinervis oil as thus an alternative source of the monoterpenes thymol, carvacrol, and p-cymene, and its toxicity on R. microplus larvae and females makes it promising possibility for control of this tick

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals
    corecore