29 research outputs found

    Green synthesis of cellulose Nanoparticles for their use in biomedicine

    Get PDF
    Recently, nanoscience has been developed as a new branch of science to obtain material at the nanometre scale. Cellulose is a polysaccharide whose molecular structure consists of D-glucopyranose units linked by β(1→4) glycosidic bonds that form a linear structure. The use of cellulose, a biodegradable and biocompatible biopolymer [1], for the synthesis of nanoparticles, together with a synthesis procedure with low energy demand and the use of ionic liquids as solvents for the biopolymer [2], meets both the requirements of nanomedicine and the principles of green chemical engineering. In this work, the synthesis of cellulose nanoparticles (CNPs) using the ionic liquid 1-ethyl-3-methylimidazolium acetate has been investigated and optimised to obtain nanoparticles with good capability for drug carrying. Two types of cellulose purchased from different suppliers were tested. Cell viability studies have been performed with a cancer cell line (HeLa) and with a healthy cell line (EA.hy926). To obtain the CNPs the experimental setup used was previously described by Fuster et al. [3] to obtain silk fibroin nanoparticles, with modifications as shown in Scheme 1.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    In vitro cytotoxicity assessment of monocationic and dicationic pyridinium-based ionic liquids on HeLa, MCF-7, BGM and EA.hy926 cell lines

    Get PDF
    Dicationic ionic liquids (ILs) generally possess higher thermal and electrochemical stability than the analogous monocationic ILs, which makes them more suitable for high-temperature applications as solvents for organic reactions, lubricants or stationary phase in gas chromatography. However, knowledge on dicationic IL cytotoxicity is still scarce. Here we explore the cytotoxicity of twelve mono- and dicationic pyridinium-based ILs on HeLa, MCF-7, BGM and EA.hy926 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell cycle arrest assays, apoptosis experiments and orange staining were carried out. The results showed that dicationic ILs are generally less cytotoxic than their monocationic counterparts. In monocationic ILs, cytotoxicity was stronger when they contain long alkyl chains, because of their higher lipophilicity. However, the full effect of the length of the linkage alkyl chain of dicationic ILs on cytotoxicity is not clear probably because the chain is “trapped” between both cationic moieties. IL cytotoxicity is highly dependent on the cell type, and HeLa cells exposed to [C12Pyr]Br die via apoptosis. The present study increases our knowledge of IL cytotoxicity on human and monkey cells and clarifies the cell death mechanism. The results suggest that dicationic ILs offer the potential to replace some monocationic ILs because of their lower cytotoxicity.This work was partially supported by the European Commission (FEDER/ERDF) and the Spanish MINECO (Ref. CTQ2017-87708-R) and the research support programme of the Seneca Foundation of Science and Technology of Murcia, Spain (Ref. 20977/PI/18). M. G. Montalbán acknowledges support from MINECO (Juan de la Cierva-Formación contract, Ref. FJCI-2016-28081), P. Licence acknowledges EPSRC and BBSRC for support (EP/S005080/1, EP/P013341/1, BB/L013940/1)

    Predicting Density and Refractive Index of Ionic Liquids

    Get PDF
    The determination of the physicochemical properties of ionic liquids (ILs), such as density and refractive index, is essential for the design of processes that involve ILs. Density has been widely studied in ILs because of its importance whereas refractive index has received less attention even though its determination is rapid, highly accurate and needs a small amount of sample in most techniques. Due to the large number of possible cation and anion combinations, it is not practical to use trial and error methods to find a suitable ionic liquid for a given function. It would be preferable to predict physical properties of ILs from their structure. We compile in this work different methods to predict density and refractive index of ILs from literature. Especially, we describe the method developed by the authors in a previous work for predicting density of ILs through their molecular volume. We also correlate our experimental measurements of density and refractive index of ILs in order to predict one of the parameters knowing the other one as a function of temperature. As the measurement of refractive index is very fast and needs only a drop of the ionic liquid, this is also a very useful approach

    Revalorization of Posidonia oceanica Waste for the Thermochemical Production of Biochar

    Get PDF
    Every year, many tonnes of Posidonia oceanica are removed from Mediterranean beaches to maintain the quality and pleasure of use of the beaches. Most of this waste ends up in landfills, entailing removal costs. In this work, the Posidonia oceanica material was characterised, and a washing system was developed to obtain biochar. An adequate washing of the starting biomass was shown to play a key role as it led to an over 90% salt content reduction and, therefore, a decrease in conductivity values. The use of biochar as a soil remediator improves soil properties, carbon sequestration, and plant growth. However, not all types of biochars are suitable for this type of application. Therefore, the properties of biochar made from Posidonia oceanica at different temperatures (300, 400, and 500 °C) were studied. All the biochars obtained showed to exceed 10% organic carbon, which is the lower limit to be applied to soils, the maximum percentage having been obtained at 300 °C. In addition, all presented pH values (8.02, 10.32, and 10.38 for the temperatures of 300, 400, and 500 °C, respectively) that were similar to those of other effective biochars for the remediation of acid soils.The present study was funded by the Ministry of Science and Innovation (Spain) [grant number PID2019-108632RB-I00] and by Prometheus Programme (Spain) [grant number CIPROM/2021/027]

    Silk Fibroin Nanoparticles: Synthesis and Applications as Drug Nanocarriers

    Get PDF
    The use of nanoparticles in biomedical fields is a very promising scientific area and has aroused the interest of researchers in the search for new biodegradable, biocompatible and non-toxic materials. This chapter is based on the features of the biopolymer silk fibroin and its applications in nanomedicine. Silk fibroin, obtained from the Bombyx mori silkworm, is a natural polymeric biomaterial whose main features are its amphiphilic chemistry, biocompatibility, biodegradability, excellent mechanical properties in various material formats, and processing flexibility. All of these properties make silk fibroin a useful candidate to act as nanocarrier. In this chapter, the structure of silk fibroin, its biocompatibility and degradability are reviewed. In addition, an intensive review on the silk fibroin nanoparticle synthesis methods is also presented. Finally, the application of the silk fibroin nanoparticles for drug delivery acting as nanocarriers is detailed

    Nanoparticles as Drug Delivery Systems

    Get PDF
    This chapter presents a review on the design of nanoparticles which have been proposed as drug delivery systems in biomedicine. It will begin with a brief historical review of nanotechnology including the most common types of nanoparticles (metal nanoparticles, liposomes, nanocrystals and polymeric nanoparticles) and their advantages as drug delivery systems. These advantages include the mechanism of increased penetration and retention, the transport of insoluble drugs and the controlled release. Next, the nanoparticle design principles and the routes of administration of nanoparticles (parental, oral, pulmonary and transdermal) are discussed. Different routes of elimination of nanoparticles (renal and hepatic) are also analyzed

    Comparative study on properties of starch films obtained from potato, corn and wheat using 1-ethyl-3-methylimidazolium acetate as plasticizer

    Get PDF
    Starch films are gaining attention as substitutes of synthetic polymers due to their biodegradability and low cost. Some ionic liquids have been postulated as alternatives to glycerol, one of the best starch plasticizers, due to their great capacity to form hydrogen bonds with starch and hence great ability of preventing starch retrogradation and increasing film stability. In this work, [emim+][Ac−]-plasticized starch films were prepared from potato, corn and wheat starch. The effect of starch molecular structure in terms of granular composition (amylose and phosphate monoester contents) and molecular weight (Mw) on film properties was evaluated. Potato starch films were the most amorphous because of the higher Mw and phosphate monoester content of potato starch, both contributing to a lower rearrangement of the starch chains making the crystallization process difficult. In contrast, corn and wheat starches lead to more crystalline films because of their lower Mw, which may imply higher mobility and crystal growth rate, and lower phosphate monoester content. This more crystalline structure could be the responsible of their better mechanical properties. [emim+][Ac−] can be considered suitable for manufacturing starch films showing corn and wheat starch films similar properties to synthetic low-density polyethylene, but involving a simple and environmentally-friendly process.This work was partially supported from the European Commission, European-Union and Ministerio de Economía y Competitividad (MINECO), Spain (Ref. CTQ2016-78246-R) and Generalitat Valenciana (Project PROMETEOII/2014/007). M.G. Montalbán acknowledges support from Ministerio de Economía y Competitividad (MINECO) (Juan de la Cierva-Formación contract, Ref. FJCI-2016-28081)

    Effect of Degumming in the Characteristics of Silk Fibroin Nanoparticles

    Get PDF
    Several studies have stated that the process used for sericin removal, or degumming, from silk cocoons has a strong impact on the silk fibroin integrity and consequently in their mechanical or biochemical properties after processing it into several biomaterials (e.g., fibers, films or scaffolds) but still, there is a lack of information of the impact on the features of silk nanoparticles. In this work, silk cocoons were degummed following four standard methods: autoclaving, short alkaline (Na2CO3) boiling, long alkaline (Na2CO3) boiling, and ultrasounds. The resultant silk fibroin fibers were dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate and used for nanoparticle synthesis by rapid desolvation in polar organic solvents. The relative efficiencies of the degumming processes and the integrity of the resulting fibroin fibers obtained were analyzed by mass loss, optical microscopy, thermogravimetric analysis, infrared spectroscopy, and SDS-PAGE. Particle sizes and morphology were analyzed by Dynamic Light Scattering and Field Emission Scanning Electronic Microscopy. The results showed that the different treatments had a remarkable impact on the integrity of the silk fibroin chains, as confirmed by gel electrophoresis, which can be correlated with particle mean size and size distribution changes. The smallest nanoparticles (156 ± 3 nm) and the most negative Z potential (−30.2 ± 1.8 mV) were obtained with the combination of long treatment (2 h) of boiling in alkaline solution (Na2CO3 0.02 eq/L). The study confirms that parameters of the process, such as the composition of the solution and time of the degumming step, must be controlled in order to reach an optimum reproducibility of the nanoparticle production.This work has been partially supported (80%) by the European Commission ERDF/FEDER Operational Programme 'Murcia' CCI N° 2007ES161PO001 (Project No. 14-20/20), and the Spanish MINECO (Ref. CTQ2017-87708-R) and the programme of support to the research of the Seneca Foundation of Science and Technology of Murcia, Spain (Ref. 20977/PI/18). A.A.L.-P.’s research contract was partially supported (80%) by the ERDF/FEDER Operational Programme 'Murcia' CCI N° 2007ES161PO001 (Project No. 14-20/20),. M.G. Montalbán’s research contract is funded by the Spanish MINECO (Juan de la Cierva-Formación contract, Ref. FJCI-2016-28081). S.D.A.-C.’s research contract is funded by the program INIA-CCAA (DOC INIA 2015), announced by the National Institute for Agricultural and Food Research and Technology (INIA) and supported by the Spanish State Research Agency (AEI) under the Spanish Ministry of Economy, Industry and Competitiveness

    Biopolymeric Nanoparticle Synthesis in Ionic Liquids

    Get PDF
    Recently, much research has focused on the use of biopolymers, which are regarded as biodegradable, natural, and environmentally friendly materials. In this context, biopolymeric nanoparticles have attracted great attention in the last few years due to their multiple applications especially in the field of biomedicine. Ionic liquids have emerged as promising solvents for use in a wide variety of chemical and biochemical processes for their extraordinary properties, which include negligible vapor pressure, high thermal and chemical stability, lower toxicity than conventional organic solvents, and the possibility of tuning their physical–chemical properties by choosing the appropriate cation and anion. We here review the published works concerning the synthesis of biopolymeric nanoparticles using ionic liquids, such as trimethylsilyl cellulose or silk fibroin. We also mention our recent studies describing how high-power ultrasounds are capable of enhancing the dissolution process of silk proteins in ionic liquids and how silk fibroin nanoparticles can be directly obtained from the silk fibroin/ionic liquid solution by rapid desolvation in polar organic solvents. As an example, their potential biomedical application of curcumin-loaded silk fibroin nanoparticles for cancer therapy is also discussed

    Influence of Starch Composition and Molecular Weight on Physicochemical Properties of Biodegradable Films

    Get PDF
    Thermoplastic starch (TPS) films are considered one of the most promising alternatives for replacing synthetic polymers in the packaging field due to the starch biodegradability, low cost, and abundant availability. However, starch granule composition, expressed in terms of amylose content and phosphate monoesters, and molecular weight of starch clearly affects some film properties. In this contribution, biodegradable TPS films made from potato, corn, wheat, and rice starch were prepared using the casting technique. The effect of the grain structure of each starch on microstructure, transparency, hydration properties, crystallinity, and mechanical properties of the films, was evaluated. Potato starch films were the most transparent and corn starch films the most opaque. All the films had homogeneous internal structures—highly amorphous and with no pores, both of which point to a good starch gelatinization process. The maximum tensile strength (4.48–8.14 MPa), elongation at break (35.41–100.34%), and Young’s modulus (116.42–294.98 MPa) of the TPS films were clearly influenced by the amylose content, molecular weight, and crystallinity of the film. In this respect, wheat and corn starch films, are the most resistant and least stretchable, while rice starch films are the most extensible but least resistant. These findings show that all the studied starches can be considered suitable for manufacturing resistant and flexible films with similar properties to those of synthetic low-density polyethylene (LDPE), by a simple and environmentally-friendly process.This work was partially supported by the European Commission (FEDER/ERDF), the Spanish MINECO (Ref. CTQ2016-78246-R), and Generalitat Valenciana (Project PROMETEOII/2014/007). M.G.M. acknowledges support from MINECO (Juan de la Cierva-Formación contract, Ref. FJCI-2016-28081)
    corecore