64 research outputs found

    Home detection of freezing of gait using Support Vector Machines through a single waist-worn triaxial accelerometer

    Get PDF
    Among Parkinson’s disease (PD) symptoms, freezing of gait (FoG) is one of the most debilitating. To assess FoG, current clinical practice mostly employs repeated evaluations over weeks and months based on questionnaires, which may not accurately map the severity of this symptom. The use of a non-invasive system to monitor the activities of daily living (ADL) and the PD symptoms experienced by patients throughout the day could provide a more accurate and objective evaluation of FoG in order to better understand the evolution of the disease and allow for a more informed decision-making process in making adjustments to the patient’s treatment plan. This paper presents a new algorithm to detect FoG with a machine learning approach based on Support Vector Machines (SVM) and a single tri-axial accelerometer worn at the waist. The method is evaluated through the acceleration signals in an outpatient setting gathered from 21 PD patients at their home and evaluated under two different conditions: first, a generic model is tested by using a leave-one-out approach and, second, a personalised model that also uses part of the dataset from each patient. Results show a significant improvement in the accuracy of the personalised model compared to the generic model, showing enhancement in the specificity and sensitivity geometric mean (GM) of 7.2%. Furthermore, the SVM approach adopted has been compared to the most comprehensive FoG detection method currently in use (referred to as MBFA in this paper). Results of our novel generic method provide an enhancement of 11.2% in the GM compared to the MBFA generic model and, in the case of the personalised model, a 10% of improvement with respect to the MBFA personalised model. Thus, our results show that a machine learning approach can be used to monitor FoG during the daily life of PD patients and, furthermore, personalised models for FoG detection can be used to improve monitoring accuracy.Peer ReviewedPostprint (published version

    A double closed loop to enhance the quality of life of Parkinson's disease patients: REMPARK system

    Get PDF
    This paper presents REMPARK system, a novel approach to deal with Parkinson's Disease (PD). REMPARK system comprises two closed loops of actuation onto PD. The first loop consists in a wearable system that, based on a belt-worn movement sensor, detects movement alterations that activate an auditory cueing system controlled by a smartphone in order to improve patient's gait. The belt-worn sensor analyzes patient's movement through real-time learning algorithms that were developed on the basis of a database previously collected from 93 PD patients. The second loop consists in disease management based on the data collected during long periods and that enables neurologists to tailor medication of their PD patients and follow the disease evolution. REMPARK system is going to be tested in 40 PD patients in Spain, Ireland, Italy and Israel. This paper describes the approach followed to obtain this system, its components, functionalities and trials in which the system will be validated.Postprint (published version

    A heterogeneous database for movement knowledge extraction in Parkinson's disease

    Get PDF
    This paper presents the design and methodology used to create a heterogeneous database for knowledge movement extraction in Parkinson's Disease. This database is being constructed as part of REM- PARK project and is composed of movement measurements acquired from inertial sensors, standard medical scales as Uni ed Parkinson's Disease Rating Scale, and other information obtained from 90 Parkinson's Disease patients. The signals obtained will be used to create movement disorder detection algorithms using supervised learning techniques. The different sources of information and the need of labelled data pose many challenges which the methodology described in this paper addresses. Some preliminary data obtained are presented.Postprint (published version

    A “HOLTER” for Parkinson's disease: validation of the ability to detect on-off states using the REMPARK system

    Get PDF
    The treatment of Parkinson's disease (PD) with levodopa is very effective. However, over time, motor complications (MCs) appear, restricting the patient from leading a normal life. One of the most disabling MCs is ON-OFF fluctuations. Gathering accurate information about the clinical status of the patient is essential for planning treatment and assessing its effect. Systems such as the REMPARK system, capable of accurately and reliably monitoring ON-OFF fluctuations, are of great interest. Objective To analyze the ability of the REMPARK System to detect ON-OFF fluctuations. Methods Forty-one patients with moderate to severe idiopathic PD were recruited according to the UK Parkinson's Disease Society Brain Bank criteria. Patients with motor fluctuations, freezing of gait and/or dyskinesia and who were able to walk unassisted in the OFF phase, were included in the study. Patients wore the REMPARK System for 3 days and completed a diary of their motor state once every hour. Results The record obtained by the REMPARK System, compared with patient-completed diaries, demonstrated 97% sensitivity in detecting OFF states and 88% specificity (i.e., accuracy in detecting ON states). Conclusion The REMPARK System detects an accurate evaluation of ON-OFF fluctuations in PD; this technology paves the way for an optimisation of the symptomatic control of PD motor symptoms as well as an accurate assessment of medication efficacy.Peer ReviewedPostprint (published version

    Posture transition identification on PD patients through a SVM-based technique and a single waist-worn accelerometer

    Get PDF
    Identification of activities of daily living is essential in order to evaluate the quality of life both in the elderly and patients with mobility problems. Posture transitions (PT) are one of the most mechanically demanding activities in daily life and,thus, they can lead to falls in patients with mobility problems. This paper deals with PT recognition in Parkinson’s Disease (PD) patients by means of a triaxial accelerometer situated between the anterior and the left lateral part of the waist. Since sensor’s orientation is susceptible to change during long monitoring periods, a hierarchical structure of classifiers is proposed in order to identify PT while allowing such orientation changes. Results are presented based on signals obtained from 20 PD patients and 67 healthy people who wore an inertial sensor on different positions among the anterior and the left lateral part of the waist. The algorithm has been compared to a previous approach in which only the anterior-lateral location was analyzed improving the sensitivity while preserving specificity. Moreover, different supervised machine l earning techniques have been evaluated in distinguishing PT. Results show that the location of the sensor slightly affects method’s performance and, furthermore, PD motor state does not alter its accuracy.Peer ReviewedPostprint (author’s final draft

    REMPARK system assessment: Main results

    Get PDF
    Parkinson's Disease (PD) is a neurodegenerative disorder that manifests with motor and non-motor symptoms. PD treatment is symptomatic and tries to alleviate the associated symptoms through an adjustment of the medication. As the disease is evolving and this evolution is patient specific, it could be very difficult to properly manage the disease. The current available technology (electronics, communication, computing, etc.), correctly combined with wearables, can be of great use for obtaining and processing useful information for both clinicians and patients allowing them to become actively involved in their condition. Parkinson's Disease Management through ICT: The REMPARK Approach presents the work done, main results and conclusions of the REMPARK project (2011 - 2015) funded by the European Union under contract FP7-ICT-2011-7-287677. REMPARK system was proposed and developed as a real Personal Health Device for the Remote and Autonomous Management of Parkinson's Disease, composed of different levels of interaction with the patient, clinician and carers, and integrating a set of interconnected sub-systems: sensor, auditory cueing, Smartphone and server. The sensor subsystem, using embedded algorithmics, is able to detect the motor symptoms associated with PD in real time. This information, sent through the Smartphone to the REMPARK server, is used for an efficient management of the disease. Implementation of REMPARK will increase the independence and Quality of Life of patients; and improve their disease management, treatment and rehabilitation.Peer ReviewedPostprint (published version

    Determining the optimal features in freezing of gait detection through a single waist accelerometer in home environments

    Get PDF
    Freezing of gait (FoG) is one of the most disturbing and incapacitating symptoms in Parkinson's disease. It is defined as a sudden block in effective stepping, provoking anxiety, stress and falls. FoG is usually evaluated by means of different questionnaires; however, this method has shown to be not reliable, since it is subjective due to its dependence on patients’ and caregivers’ judgment. Several authors have analyzed the usage of MEMS inertial systems to detect FoG with the aim of objectively evaluating it. So far, specific methods based on accelerometer's frequency response has been employed in many works; nonetheless, since they have been developed and tested in laboratory conditions, their performance is commonly poor when being used at patients’ home. Therefore, this work proposes a new set of features that aims to detect FoG in real environments by using accelerometers. This set of features is compared with three previously reported approaches to detect FoG. The different feature sets are trained by means of several machine learning classifiers; furthermore, different window sizes are also evaluated. In addition, a greedy subset selection process is performed to reduce the computational load of the method and to enable a real-time implementation. Results show that the proposed method detects FoG at patients’ home with 91.7% and 87.4% of sensitivity and specificity, respectively, enhancing the results of former methods between a 5% and 11% and providing a more balanced rate of true positives and true negatives.Peer ReviewedPostprint (published version

    Pediatric antimicrobial stewardship in the COVID-19 outbreak

    Get PDF
    Growing evidence supports the positive impact of antimicrobial stewardship programs (ASPs) on antimicrobial use, including pediatrics.1 Although short of the level of acceptance these have reached in the United States, the implementation of pediatric ASPs in European hospitals has increased over the last few years.1 It has been suggested that the ASP should be helpful in the preparation for and response to the SARS-CoV-2/COVID-19 outbreak, 2 but no formal recommendations have been published. Whether pediatric ASP remains an essential activity or not during the COVID-19 pandemic has yet to be clarified. Here, we describe how the COVID-19 pandemic has impacted antimicrobial use in a referral pediatric hospital, and we propose a supporting role for ASP teams in the local management of the outbreak. The first COVID-19 case in Catalonia, Spain, was reported on February 25, 2020. By mid-March, most pediatric and obstetrics departments in the region were shut to increase the capacity for adult COVID-19 patients. Hospital Sant Joan de Déu Barcelona (SJD) remained the largest pediatric and maternal referral center in the region. COVID-19 and non-COVID-19 pediatric and young adult patients were transferred to our wards and pediatric ICU (PICU), and the number of daily deliveries tripled, whereas all nonemergency clinical, teaching, and research activities were postponed. Compared to the same months in 2019, in March 2020, total hospital stays decreased by 0.8% in the PICU and 15.2% in non-PICU areas, and in April 2020, total hospital stays decreased by 23.7% in the PICU and 22.2% in non-PICU areas
    corecore