6,698 research outputs found

    Mid-infrared size survey of Young Stellar Objects: Description of Keck segment-tilting experiment and basic results

    Full text link
    The mid-infrared properties of pre-planetary disks are sensitive to the temperature and flaring profiles of disks for the regions where planet formation is expected to occur. In order to constrain theories of planet formation, we have carried out a mid-infrared (wavelength 10.7 microns) size survey of young stellar objects using the segmented Keck telescope in a novel configuration. We introduced a customized pattern of tilts to individual mirror segments to allow efficient sparse-aperture interferometry, allowing full aperture synthesis imaging with higher calibration precision than traditional imaging. In contrast to previous surveys on smaller telescopes and with poorer calibration precision, we find most objects in our sample are partially resolved. Here we present the main observational results of our survey of 5 embedded massive protostars, 25 Herbig Ae/Be stars, 3 T Tauri stars, 1 FU Ori system, and 5 emission-line objects of uncertain classification. The observed mid-infrared sizes do not obey the size-luminosity relation found at near-infrared wavelengths and a companion paper will provide further modelling analysis of this sample. In addition, we report imaging results for a few of the most resolved objects, including complex emission around embedded massive protostars, the photoevaporating circumbinary disk around MWC 361A, and the subarcsecond binaries T Tau, FU Ori and MWC 1080.Comment: Accepted by Astrophysical Journal. 38 pages. 9 figure

    Born Again Protoplanetary Disk Around Mira B

    Get PDF
    The Mira AB system is a nearby (~107 pc) example of a wind accreting binary star system. In this class of system, the wind from a mass-losing red giant star (Mira A) is accreted onto a companion (Mira B), as indicated by an accretion shock signature in spectra at ultraviolet and X-ray wavelengths. Using novel imaging techniques, we report the detection of emission at mid-infrared wavelengths between 9.7 and 18.3 μ\mum from the vicinity of Mira B but with a peak at a radial position about 10 AU closer to the primary Mira A. We interpret the mid-infrared emission as the edge of an optically-thick accretion disk heated by Mira A. The discovery of this new class of accretion disk fed by M-giant mass loss implies a potential population of young planetary systems in white-dwarf binaries which has been little explored, despite being relatively common in the solar neighborhood.Comment: Accepted for Ap

    Milli-arcsecond images of the Herbig Ae star HD 163296

    Full text link
    The very close environments of young stars are the hosts of fundamental physical processes, such as planet formation, star-disk interactions, mass accretion, and ejection. The complex morphological structure of these environments has been confirmed by the now quite rich data sets obtained for a few objects by near-infrared long-baseline interferometry. We gathered numerous interferometric measurements for the young star HD163296 with various interferometers (VLTI, IOTA, KeckI and CHARA), allowing for the first time an image independent of any a priori model to be reconstructed. Using the Multi-aperture image Reconstruction Algorithm (MiRA), we reconstruct images of HD 163296 in the H and K bands. We compare these images with reconstructed images obtained from simulated data using a physical model of the environment of HD 163296. We obtain model-independent HH and KK-band images of the surroundings of HD 163296. The images present several significant features that we can relate to an inclined asymmetric flared disk around HD 163296 with the strongest intensity at about 4-5 mas. Because of the incomplete spatial frequency coverage, we cannot state whether each of them individually is peculiar in any way. For the first time, milli-arcsecond images of the environment of a young star are produced. These images confirm that the morphology of the close environment of young stars is more complex than the simple models used in the literature so far.Comment: 11 pages, 10 figures, accepted A&A pape

    Fundamental properties and atmospheric structure of the red supergiant VY CMa based on VLTI/AMBER spectro-interferometry

    Full text link
    We investigate the atmospheric structure and fundamental properties of the red supergiant VY CMa. We obtained near-infrared spectro-interferometric observations of VY CMa with spectral resolutions of 35 and 1500 using the AMBER instrument at the VLTI. The visibility data indicate the presence of molecular layers of water vapor and CO in the extended atmosphere with an asymmetric morphology. The uniform disk diameter in the water band around 2.0 mu is increased by \sim20% compared to the near-continuum bandpass at 2.20-2.25 mu and in the CO band at 2.3-2.5 mu it is increased by up to \sim50%. The closure phases indicate relatively small deviations from point symmetry close to the photospheric layer, and stronger deviations in the extended H2O and CO layers. Making use of the high spatial and spectral resolution, a near-continuum bandpass can be isolated from contamination by molecular and dusty layers, and the Rosseland-mean photospheric angular diameter is estimated to 11.3 +/- 0.3 mas based on a PHOENIX atmosphere model. Together with recent high-precision estimates of the distance and spectro-photometry, this estimate corresponds to a radius of 1420 +/- 120 Rsun and an effective temperature of 3490 +/- 90 K. VY CMa exhibits asymmetric, possibly clumpy, atmospheric layers of H2O and CO, which are not co-spatial, within a larger elongated dusty envelope. Our revised fundamental parameters put VY CMa close to the Hayashi limit of recent evolutionary tracks of initial mass 25 Msun with rotation or 32 Msun without rotation, shortly before evolving blueward in the HR-diagram.Comment: 5 pages, 5 figures, accepted for publication in Astronomy and Astrophysics (A&A) as a Lette

    Science with the Keck Interferometer ASTRA Program

    Get PDF
    The ASTrometric and phase-Referenced Astronomy (ASTRA) project will provide phase referencing and astrometric observations at the Keck Interferometer, leading to enhanced sensitivity and the ability to monitor orbits at an accuracy level of 30-100 microarcseconds. Here we discuss recent scientific results from ASTRA, and describe new scientific programs that will begin in 2010-2011. We begin with results from the "self phase referencing" (SPR) mode of ASTRA, which uses continuum light to correct atmospheric phase variations and produce a phase-stabilized channel for spectroscopy. We have observed a number of protoplanetary disks using SPR and a grism providing a spectral dispersion of ~2000. In our data we spatially resolve emission from dust as well as gas. Hydrogen line emission is spectrally resolved, allowing differential phase measurements across the emission line that constrain the relative centroids of different velocity components at the 10 microarcsecond level. In the upcoming year, we will begin dual-field phase referencing (DFPR) measurements of the Galactic Center and a number of exoplanet systems. These observations will, in part, serve as precursors to astrometric monitoring of stellar orbits in the Galactic Center and stellar wobbles of exoplanet host stars. We describe the design of several scientific investigations capitalizing on the upcoming phase-referencing and astrometric capabilities of ASTRA.Comment: Published in the proceedings of the SPIE 2010 conference on "Optical and Infrared Interferometry II

    Raman scattering evidence for a cascade-like evolution of the charge-density-wave collective amplitude mode

    Full text link
    The two-dimensional rare-earth tri-tellurides undergo a unidirectional charge-density-wave (CDW) transition at high temperature and, for the heaviest members of the series, a bidirectional one at low temperature. Raman scattering experiments as a function of temperature on DyTe3_3 and on LaTe3_3 at 6 GPa provide a clear-cut evidence for the emergence of the respective collective CDW amplitude excitations. In the unidirectional CDW phase, we surprisingly discover that the amplitude mode develops as a succession of two mean-field, BCS-like transitions in different temperature ranges

    The Keck Aperture Masking Experiment: spectro-interferometry of 3 Mira Variables from 1.1 to 3.8 microns

    Full text link
    We present results from a spectro-interferometric study of the Miras o Cet, R Leo and W Hya obtained with the Keck Aperture Masking Experiment from 1998 Sep to 2002 Jul. The spectrally dispersed visibility data permit fitting with circularly symmetric brightness profiles such as a simple uniform disk. The stellar angular diameter obtained over up to ~ 450 spectral channels spaning the region 1.1-3.8 microns is presented. Use of a simple uniform disk brightness model facilitates comparison between epochs and with existing data and theoretical models. Strong size variations with wavelength were recorded for all stars, probing zones of H2O, CO, OH, and dust formation. Comparison with contemporaneous spectra extracted from our data show a strong anti-correlation between the observed angular diameter and flux. These variations consolidate the notion of a complex stellar atmosphere consisting of molecular shells with time-dependent densities and temperatures. Our findings are compared with existing data and pulsation models. The models were found to reproduce the functional form of the wavelength vs. angular diameter curve well, although some departures are noted in the 2.8-3.5 micron range.Comment: 10 pages, 10 figures Accepted to Ap
    • …
    corecore