10 research outputs found

    Impact of electron-hole correlations on the 1T-TiSe21T\text{-}{\mathrm{TiSe}}_{2} electronic structure

    Get PDF
    Several experiments have been performed on 1T−TiSe2 in order to identify whether the electronic structure is semimetallic or semiconducting without reaching a consensus. In this Letter, we theoretically study the impact of electron-hole and electron-phonon correlations on the bare semimetallic and semiconducting electronic structure. The resulting electron spectral functions provide a direct comparison of both cases and demonstrate that 1T−TiSe2 is of predominant semiconducting character with some spectral weight crossing the Fermi level

    Excited states at interfaces of a metal-supported ultrathin oxide film

    Get PDF
    We report layer-resolved measurements of the unoccupied electronic structure of ultrathin MgO films grown on Ag(001). The metal-induced gap states at the metal/oxide interface, the oxide band gap, and a surface core exciton involving an image-potential state of the vacuum are revealed through resonant Auger spectroscopy of the MgKL23L23 Auger transition. Our results demonstrate how to obtain new insights on empty states at interfaces of metal-supported ultrathin oxide films

    Three-dimensional momentum-resolved electronic structure of 1T-TiSe2:1T\text{-}{\mathrm{TiSe}}_{2}: A combined soft-x-ray photoemission and density functional theory study

    Get PDF
    1T−TiSe2 is a quasi-two-dimensional transition metal dichalcogenide, which exhibits a charge density wave transition at a critical temperature of ∼200 K as well as low- temperature superconductivity induced by pressure or intercalation. The electronic energy dispersion measured by soft x-ray angle-resolved photoemission is not only momentum resolved parallel to the surface but also perpendicular to it. Experiments are compared to density functional theory based band structure calculations using different exchange-correlation functionals. The results reveal the importance of including spin-orbit coupling for a good description of the experimental bands. Compared to calculations within the local density approximation, the use of the modified Becke-Johnson (mBJ) exchange functional leads to a band structure that does not need an artificial downwards shift of the valence band to fit the experiment. The mBJ functional thus clearly appears as the most adapted functional for the theoretical description of the 1T−TiSe2 band structure within the DFT framework

    Local real-space view of the achiral 1T\text{\ensuremath{-}}{\mathrm{TiSe}}_{2} 2×2×22\times2\times2 charge density wave

    Get PDF
    The transition metal dichalcogenide 1T−TiSe2-two-dimensional layered material undergoing a commensurate 2×2×2 charge density wave (CDW) transition with a weak periodic lattice distortion (PLD) below ≈200 K. Scanning tunneling microscopy (STM) combined with intentionally introduced interstitial Ti atoms allows us to go beyond the usual spatial resolution of STM and to intimately probe the three- dimensional character of the PLD. Furthermore, the inversion-symmetric achiral nature of the CDW in the z direction is revealed, contradicting the claimed existence of helical CDW stacking and associated chiral order. This study paves the way to a simultaneous real-space probing of both charge and structural reconstructions in CDW compounds

    Doping nature of native defects in 1T−TiSe₂

    Get PDF
    The transition-metal dichalcogenide 1T−TiSe₂is a quasi-two-dimensional layered material with a charge density wave (CDW) transition temperature of TCDW≈200  K. Self-doping effects for crystals grown at different temperatures introduce structural defects, modify the temperature-dependent resistivity, and strongly perturbate the CDW phase. Here, we study the structural and doping nature of such native defects combining scanning tunneling microscopy or spectroscopy and ab initio calculations. The dominant native single atom dopants we identify in our single crystals are intercalated Ti atoms, Se vacancies, and Se substitutions by residual iodine and oxygen

    Short-range phase coherence and origin of the 1T−TiSe21T-{\mathrm{TiSe}}_{2} charge density wave

    Get PDF
    The impact of variable Ti self-doping on the 1T−TiSe2 charge density wave (CDW) is studied by scanning tunneling microscopy. Supported by density functional theory, we show that agglomeration of intercalated-Ti atoms acts as preferential nucleation centers for the CDW that breaks up in phase-shifted CDW domains whose size directly depends on the intercalated-Ti concentration and which are separated by atomically sharp phase boundaries. The close relationship between the diminution of the CDW domain size and the disappearance of the anomalous peak in the temperature-dependent resistivity allows to draw a coherent picture of the 1T−TiSe2 CDW phase transition and its relation to excitons

    Local resilience of the 1T\text{\ensuremath{-}}{\mathrm{TiSe}}_{2} charge density wave to Ti self-doping

    Get PDF
    In Ti-intercalated self-doped 1T−TiSe2 crystals, the charge density wave (CDW) superstructure induces two nonequivalent sites for Ti dopants. Recently, it has been shown that increasing Ti doping dramatically influences the CDW by breaking it into phase-shifted domains. Here, we report scanning tunneling microscopy and spectroscopy experiments that reveal a dopant-site dependence of the CDW gap. Supported by density functional theory, we demonstrate that the loss of the long-range phase coherence introduces an imbalance in the intercalated-Ti site distribution and restrains the CDW gap closure. This local resilient behavior of the 1T−TiSe2 CDW reveals an entangled mechanism between CDW, periodic lattice distortion, and induced nonequivalent defects

    Selective probing of hidden spin-polarized states in inversion-symmetric bulk MoS2{\mathrm{MoS}}_{2}

    Get PDF
    Spin- and angle-resolved photoemission spectroscopy is used to reveal that a large spin polarization is observable in the bulk centrosymmetric transition metal dichalcogenide MoS2. It is found that the measured spin polarization can be reversed by changing the handedness of incident circularly polarized light. Calculations based on a three-step model of photoemission show that the valley and layer-locked spin- polarized electronic states can be selectively addressed by circularly polarized light, therefore providing a novel route to probe these hidden spin-polarized states in inversion-symmetric systems as predicted by Zhang et al. [Nat. Phys. 10, 387 (2014).]

    Scanning tunneling microscopy of the charge density wave in 1T−TiSe21T-{\mathrm{TiSe}}_{2} in the presence of single atom defects

    Get PDF
    We present a detailed low-temperature scanning tunneling microscopy (STM) study of the commensurate charge density wave (CDW) in 1T−TiSe21T-{\mathrm{TiSe}}_{2} in the presence of single atom defects. We find no significant modification of the CDW lattice in single crystals with native defect concentrations where some bulk probes already measure substantial reductions in the CDW phase transition signature. A systematic analysis of STM micrographs combined with density functional theory modeling of atomic defect patterns indicate that the observed CDW modulation lies in the Se surface layer. The defect patterns clearly show there are no 2H-polytype inclusions in the CDW phase, as previously found at room temperature [A. N. Titov et al., Phys. Solid State 53, 1073 (2011)]. They further provide an alternative explanation for the chiral Friedel oscillations recently reported in this compound [J. Ishioka et al., Phys. Rev. B 84, 245125 (2011)]

    Electron-hole fluctuation phase in 1T-TiSeâ‚‚

    Get PDF
    To address the fluctuation regime above the critical temperature of the charge-density-wave phase of 1T-TiSeâ‚‚, we perform calculations using the Bethe-Salpeter equation for treating strong electron-hole correlations. Calculated photoemission intensity maps are in good agreement with the measured ones and provide a deeper understanding of the phase transition in terms of an electronic instability. We find that no real nesting of the Fermi surface is necessary, but crossing points between different Fermi surface sheets produce an instability with a wave vector corresponding to the commensurate charge distribution observed below the critical temperature. Finally, we also consider the effect of the electron-phonon interaction on the calculated spectra to discriminate what mechanism is responsible for the instability and conclude that the electron-hole fluctuation scenario is more likely to occur
    corecore