151 research outputs found

    The reactive metabolite target protein database (TPDB) – a web-accessible resource

    Get PDF
    BACKGROUND: The toxic effects of many simple organic compounds stem from their biotransformation to chemically reactive metabolites which bind covalently to cellular proteins. To understand the mechanisms of cytotoxic responses it may be important to know which proteins become adducted and whether some may be common targets of multiple toxins. The literature of this field is widely scattered but expanding rapidly, suggesting the need for a comprehensive, searchable database of reactive metabolite target proteins. DESCRIPTION: The Reactive Metabolite Target Protein Database (TPDB) is a comprehensive, curated, searchable, documented compilation of publicly available information on the protein targets of reactive metabolites of 18 well-studied chemicals and drugs of known toxicity. TPDB software enables i) string searches for author names and proteins names/synonyms, ii) more complex searches by selecting chemical compound, animal species, target tissue and protein names/synonyms from pull-down menus, and iii) commonality searches over multiple chemicals. Tabulated search results provide information, references and links to other databases. CONCLUSION: The TPDB is a unique on-line compilation of information on the covalent modification of cellular proteins by reactive metabolites of chemicals and drugs. Its comprehensiveness and searchability should facilitate the elucidation of mechanisms of reactive metabolite toxicity. The database is freely available a

    Benign mammary epithelial cells enhance the transformed phenotype of human breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent research has yielded a wealth of data underscoring the key role of the cancer microenvironment, especially immune and stromal cells, in the progression of cancer and the development of metastases. However, the role of adjacent benign epithelial cells, which provide initial cell-cell contacts with cancer cells, in tumor progression has not been thoroughly examined. In this report we addressed the question whether benign MECs alter the transformed phenotype of human breast cancer cells.</p> <p>Methods</p> <p>We used both <it>in vitro </it>and <it>in vivo </it>co-cultivation approaches, whereby we mixed GFP-tagged MCF-10A cells (G2B-10A), as a model of benign mammary epithelial cells (MECs), and RFP-tagged MDA-MB-231-TIAS cells (R2-T1AS), as a model of breast cancer cells.</p> <p>Results</p> <p>The <it>in vitro </it>studies showed that G2B-10A cells increase the colony formation of R2-T1AS cells in both soft agar and clonogenicity assays. Conditioned media derived from G2B-10A cells enhanced colony formation of R2-T1AS cells, whereas prior paraformaldehyde (PFA) fixation of G2B-10A cells abrogated this enhancement effect. Moreover, two other models of benign MECs, MCF-12A and HuMECs, also enhanced R2-T1AS colony growth in soft agar and clonogenicity assays. These data reveal that factors secreted by benign MECs are responsible for the observed enhancement of the R2-T1AS transformed phenotype. To determine whether G2B-10A cells enhance the tumorigenic growth of co-injected R2-T1AS cells <it>in vivo</it>, we used the nude mouse xenograft assay. Co-injecting R2-T1AS cells with G2B-10A cells Β± PFA-fixation, revealed that G2B-10A cells promoted a ~3-fold increase in tumor growth, irrespective of PFA pre-treatment. These results indicate that soluble factors secreted by G2B-10A cells play a less important role in promoting R2-T1AS tumorigenesis <it>in vivo</it>, and that additional components are operative in the nude mouse xenograft assay. Finally, using array analysis, we found that both live and PFA-fixed G2B-10A cells induced R2-T1AS cells to secrete specific cytokines (IL-6 and GM-CSF), suggesting that cell-cell contact activates R2-T1AS cells.</p> <p>Conclusions</p> <p>Taken together, these data shift our understanding of adjacent benign epithelial cells in the cancer process, from passive, noncontributory cells to an active and tumor-promoting vicinal cell population that may have significant effects early, when benign cells outnumber malignant cells.</p

    The DISC1 Pathway Modulates Expression of Neurodevelopmental, Synaptogenic and Sensory Perception Genes

    Get PDF
    Genetic and biological evidence supports a role for DISC1 across a spectrum of major mental illnesses, including schizophrenia and bipolar disorder. There is evidence for genetic interplay between variants in DISC1 and in biologically interacting loci in psychiatric illness. DISC1 also associates with normal variance in behavioral and brain imaging phenotypes.Here, we analyze public domain datasets and demonstrate correlations between variants in the DISC1 pathway genes and levels of gene expression. Genetic variants of DISC1, NDE1, PDE4B and PDE4D regulate the expression of cytoskeletal, synaptogenic, neurodevelopmental and sensory perception proteins. Interestingly, these regulated genes include existing targets for drug development in depression and psychosis.Our systematic analysis provides further evidence for the relevance of the DISC1 pathway to major mental illness, identifies additional potential targets for therapeutic intervention and establishes a general strategy to mine public datasets for insights into disease pathways

    A High-Density EEG Investigation into Steady State Binaural Beat Stimulation

    Get PDF
    Binaural beats are an auditory phenomenon that has been suggested to alter physiological and cognitive processes including vigilance and brainwave entrainment. Some personality traits measured by the NEO Five Factor Model have been found to alter entrainment using pulsing light stimuli, but as yet no studies have examined if this occurs using steady state presentation of binaural beats for a relatively short presentation of two minutes. This study aimed to examine if binaural beat stimulation altered vigilance or cortical frequencies and if personality traits were involved. Thirty-one participants were played binaural beat stimuli designed to elicit a response at either the Theta (7 Hz) or Beta (16 Hz) frequency bands while undertaking a zero-back vigilance task. EEG was recorded from a high-density electrode cap. No significant differences were found in vigilance or cortical frequency power during binaural beat stimulation compared to a white noise control period. Furthermore, no significant relationships were detected between the above and the Big Five personality traits. This suggests a short presentation of steady state binaural beats are not sufficient to alter vigilance or entrain cortical frequencies at the two bands examined and that certain personality traits were not more susceptible than others

    Features of Idebenone and Related Short-Chain Quinones that Rescue ATP Levels under Conditions of Impaired Mitochondrial Complex I

    Get PDF
    Short-chain quinones have been investigated as therapeutic molecules due to their ability to modulate cellular redox reactions, mitochondrial electron transfer and oxidative stress, which are pathologically altered in many mitochondrial and neuromuscular disorders. Recently, we and others described that certain short-chain quinones are able to bypass a deficiency in complex I by shuttling electrons directly from the cytoplasm to complex III of the mitochondrial respiratory chain to produce ATP. Although this energy rescue activity is highly interesting for the therapy of disorders associated with complex I dysfunction, no structure-activity-relationship has been reported for short-chain quinones so far. Using a panel of 70 quinones, we observed that the capacity for this cellular energy rescue as well as their effect on lipid peroxidation was influenced more by the physicochemical properties (in particular logD) of the whole molecule than the quinone moiety itself. Thus, the observed correlations allow us to explain the differential biological activities and therapeutic potential of short-chain quinones for the therapy of disorders associated with mitochondrial complex I dysfunction and/or oxidative stress

    Effects of combined treatment with rapamycin and cotylenin A, a novel differentiation-inducing agent, on human breast carcinoma MCF-7 cells and xenografts

    Get PDF
    INTRODUCTION: Rapamycin, an inhibitor of the serine/threonine kinase target of rapamycin, induces G(1 )arrest and/or apoptosis. Although rapamycin and its analogues are attractive candidates for cancer therapy, their sensitivities with respect to growth inhibition differ markedly among various cancer cells. Using human breast carcinoma cell line MCF-7 as an experimental model system, we examined the growth-inhibitory effects of combinations of various agents and rapamycin to find the agent that most potently enhances the growth-inhibitory effect of rapamycin. METHOD: We evaluated the growth-inhibitory effect of rapamycin plus various agents, including cotylenin A (a novel inducer of differentiation of myeloid leukaemia cells) to MCF-7 cells, using either MTT assay or trypan blue dye exclusion test. The cell cycle was analyzed using propidium iodide-stained nuclei. Expressions of several genes in MCF-7 cells with rapamycin plus cotylenin A were studied using cDNA microarray analysis and RT-PCR. The in vitro results of MCF-7 cells treated with rapamycin plus cotylenin A were further confirmed in vivo in a mouse xenograft model. RESULTS: We found that the sensitivity of rapamycin to MCF-7 cells was markedly affected by cotylenin A. This treatment induced growth arrest of the cells at the G(1 )phase, rather than apoptosis, and induced senescence-associated Ξ²-galactosidase activity. We examined the gene expression profiles associated with exposure to rapamycin and cotylenin A using cDNA microarrays. We found that expressions of cyclin G(2), transforming growth factor-Ξ²-induced 68 kDa protein, BCL2-interacting killer, and growth factor receptor-bound 7 were markedly induced in MCF-7 cells treated with rapamycin plus cotylenin A. Furthermore, combined treatment with rapamycin and cotylenin A significantly inhibited the growth of MCF-7 cells as xenografts, without apparent adverse effects. CONCLUSION: Rapamycin and cotylenin A cooperatively induced growth arrest in breast carcinoma MCF-7 cells in vitro, and treatment with rapamycin and cotylenin A combined more strongly inhibited the growth of MCF-7 cells as xenografts in vivo than treatment with rapamycin or cotylenin A alone, suggesting that this combination may have therapeutic value in treating breast cancer. We also identified several genes that were markedly modulated in MCF-7 cells treated with rapamycin plus cotylenin A

    Multiple Cellular Responses to Serotonin Contribute to Epithelial Homeostasis

    Get PDF
    Epithelial homeostasis incorporates the paradoxical concept of internal change (epithelial turnover) enabling the maintenance of anatomical status quo. Epithelial cell differentiation and cell loss (cell shedding and apoptosis) form important components of epithelial turnover. Although the mechanisms of cell loss are being uncovered the crucial triggers that modulate epithelial turnover through regulation of cell loss remain undetermined. Serotonin is emerging as a common autocrine-paracine regulator in epithelia of multiple organs, including the breast. Here we address whether serotonin affects epithelial turnover. Specifically, serotonin's roles in regulating cell shedding, apoptosis and barrier function of the epithelium. Using in vivo studies in mouse and a robust model of differentiated human mammary duct epithelium (MCF10A), we show that serotonin induces mammary epithelial cell shedding and disrupts tight junctions in a reversible manner. However, upon sustained exposure, serotonin induces apoptosis in the replenishing cell population, causing irreversible changes to the epithelial membrane. The staggered nature of these events induced by serotonin slowly shifts the balance in the epithelium from reversible to irreversible. These finding have very important implications towards our ability to control epithelial regeneration and thus address pathologies of aberrant epithelial turnover, which range from degenerative disorders (e.g.; pancreatitis and thyrioditis) to proliferative disorders (e.g.; mastitis, ductal ectasia, cholangiopathies and epithelial cancers)

    NQO1-Dependent Redox Cycling of Idebenone: Effects on Cellular Redox Potential and Energy Levels

    Get PDF
    Short-chain quinones are described as potent antioxidants and in the case of idebenone have already been under clinical investigation for the treatment of neuromuscular disorders. Due to their analogy to coenzyme Q10 (CoQ10), a long-chain quinone, they are widely regarded as a substitute for CoQ10. However, apart from their antioxidant function, this provides no clear rationale for their use in disorders with normal CoQ10 levels. Using recombinant NAD(P)H:quinone oxidoreductase (NQO) enzymes, we observed that contrary to CoQ10 short-chain quinones such as idebenone are good substrates for both NQO1 and NQO2. Furthermore, the reduction of short-chain quinones by NQOs enabled an antimycin A-sensitive transfer of electrons from cytosolic NAD(P)H to the mitochondrial respiratory chain in both human hepatoma cells (HepG2) and freshly isolated mouse hepatocytes. Consistent with the substrate selectivity of NQOs, both idebenone and CoQ1, but not CoQ10, partially restored cellular ATP levels under conditions of impaired complex I function. The observed cytosolic-mitochondrial shuttling of idebenone and CoQ1 was also associated with reduced lactate production by cybrid cells from mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) patients. Thus, the observed activities separate the effectiveness of short-chain quinones from the related long-chain CoQ10 and provide the rationale for the use of short-chain quinones such as idebenone for the treatment of mitochondrial disorders

    Macrophages in Breast Cancer: Do Involution Macrophages Account for the Poor Prognosis of Pregnancy-Associated Breast Cancer?

    Get PDF
    Macrophage influx is associated with negative outcomes for women with breast cancer and has been demonstrated to be required for metastasis of mammary tumors in mouse models. Pregnancy-associated breast cancer is characterized by particularly poor outcomes, however the reasons remain obscure. Recently, post-pregnancy mammary involution has been characterized as having a wound healing signature. We have proposed the involution-hypothesis, which states that the wound healing microenvironment of the involuting gland is tumor promotional. Macrophage influx is one of the prominent features of the involuting gland, identifying the macrophage a potential instigator of tumor progression and a novel target for breast cancer treatment and prevention
    • …
    corecore