434 research outputs found
Evidence for two disparate spin dynamic regimes within Fe-substituted La0.7 Pb0.3 (Mn1-x Fex) O3 (0≤x≤0.2) colossal magnetoresistive manganites: Neutron spin-echo measurements
10 págs.; 7 figs.; 1 tab. ; PACS number s : 75.25. z, 75.30.Ds, 75.40.Gb, 75.47.GkThe spin dynamics of substituted colossal magnetoresistive (CMR) manganites of general formula La0.7 Pb0.3 (Mn1-x Fex) O3, 0≤x≤0.2 is investigated by means of neutron spin-echo measurements. Substitution of Mn by Fe leads to a strong decrease of the temperature of macroscopic magnetic long-range ordering with a concomitant enhancement of the CMR effect. For x=0.2, a long-range-ordered state is not achieved as a result of the increase in antiferromagnetic interactions brought forward by Fe+3 -Mn couplings. The results display two relaxations having well separated decay constants. A fast process with a relaxation time of about 10 ps within the paramagnetic phase is found for all compositions. It shows a remarkably strong dependence with temperature and sample composition as the apparent activation energy for spin diffusion as well as the preexponential term exemplify. The physical origin of such a fast relaxation is assigned to heavily damped or overdamped spin waves (spin diffusion) on the basis of some signatures of excitations having finite frequencies found for the parent compound La0.7 Pb0.3 Mn O3 at temperatures just below Tc, together with preliminary data on the effect of Fe doping on the stiffness constant. A slower relaxation is present for all compositions. Its temperature dependence follows the behavior of the macroscopic magnetization, and its intensity grows within the ordered ferromagnetic state. Its physical origin is ascribed to collective reorientation of nanoscale ferromagnetic domains on the basis of the wave-vector dependence of its relaxation rate and amplitude. © 2007 The American Physical Society.J.G. and J.M.B. thank the Spanish Ministerio de Educacion
y Ciencia for financial support under research Grant No.
MAT2005-0686-C04-03. F.J.B. and P.R. acknowledge financial
support from the European Commission through NMI3
to carry out preliminary measurements at the FZJ facilities.Peer Reviewe
Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts
In order to study the mechanisms limiting the topological chain confinement in polymer melts, we have performed neutron-spin-echo investigations of the single-chain dynamic-structure factor from polyethylene melts over a large range of chain lengths. While at high molecular weight the reptation model is corroborated, a systematic loosening of the confinement with decreasing chain length is found. The dynamic-structure factors are quantitatively described by the effect of contour-length fluctuations on the confining tube, establishing this mechanism on a molecular level in space and time
Statistical Mechanics of Vacancy and Interstitial Strings in Hexagonal Columnar Crystals
Columnar crystals contain defects in the form of vacancy/interstitial loops
or strings of vacancies and interstitials bounded by column ``heads'' and
``tails''. These defect strings are oriented by the columnar lattice and can
change size and shape by movement of the ends and forming kinks along the
length. Hence an analysis in terms of directed living polymers is appropriate
to study their size and shape distribution, volume fraction, etc. If the
entropy of transverse fluctuations overcomes the string line tension in the
crystalline phase, a string proliferation transition occurs, leading to a
supersolid phase. We estimate the wandering entropy and examine the behaviour
in the transition regime. We also calculate numerically the line tension of
various species of vacancies and interstitials in a triangular lattice for
power-law potentials as well as for a modified Bessel function interaction
between columns as occurs in the case of flux lines in type-II superconductors
or long polyelectrolytes in an ionic solution. We find that the centered
interstitial is the lowest energy defect for a very wide range of interactions;
the symmetric vacancy is preferred only for extremely short interaction ranges.Comment: 22 pages (revtex), 15 figures (encapsulated postscript
The Cyclostratigraphy Intercomparison Project (CIP): consistency, merits and pitfalls
Cyclostratigraphy is an important tool for understanding astronomical climate forcing and reading geological time in sedimentary sequences, provided that an imprint of insolation variations caused by Earth’s orbital eccentricity, obliquity and/or precession is preserved (Milankovitch forcing). Numerous stratigraphic and paleoclimate studies have applied cyclostratigraphy, but the robustness of the methodology and its dependence on the investigator have not been systematically evaluated. We developed the Cyclostratigraphy Intercomparison Project (CIP) to assess the robustness of cyclostratigraphic methods using an experimental design of three artificial cyclostratigraphic case studies with known input parameters. Each case study is designed to address specific challenges that are relevant to cyclostratigraphy. Case 1 represents an offshore research vessel environment, as only a drill-core photo and the approximate position of a late Miocene stage boundary are available for analysis. In Case 2, the Pleistocene proxy record displays clear nonlinear cyclical patterns and the interpretation is complicated by the presence of a hiatus. Case 3 represents a Late Devonian proxy record with a low signal-to-noise ratio with no specific theoretical astronomical solution available for this age. Each case was analyzed by a test group of 17-20 participants, with varying experience levels, methodological preferences and dedicated analysis time. During the CIP 2018 meeting in Brussels, Belgium, the ensuing analyses and discussion demonstrated that most participants did not arrive at a perfect solution, which may be partly explained by the limited amount of time spent on the exercises (∼4.5 hours per case). However, in all three cases, the median solution of all submitted analyses accurately approached the correct result and several participants obtained the exact correct answers. Interestingly, systematically better performances were obtained for cases that represented the data type and stratigraphic age that were closest to the individual participants’ experience. This experiment demonstrates that cyclostratigraphy is a powerful tool for deciphering time in sedimentary successions and, importantly, that it is a trainable skill. Finally, we emphasize the importance of an integrated stratigraphic approach and provide flexible guidelines on what good practices in cyclostratigraphy should include. Our case studies provide valuable insight into current common practices in cyclostratigraphy, their potential merits and pitfalls. Our work does not provide a quantitative measure of reliability and uncertainty of cyclostratigraphy, but rather constitutes a starting point for further discussions on how to move the maturing field of cyclostratigraphy forward
Exploring internal protein dynamics by neutron spin echo spectroscopy
The activity of proteins is often related to configuration changes that concern single atoms or amino acids or entire subdomains within the protein. The corresponding length and timescale reach from sub-Angstrom and picoseconds to nanometers and several tens of nanoseconds and beyond. We focus here on the slow motions on several ten nanosecond timescales of complete domains and show that and how these can be accessed by means of small angle neutron scattering and neutron spin-echo spectroscopy. In particular neutron spin echo spectroscopy is able to access timescales up to several hundred nanoseconds. Further insight into domain dynamics can be achieved by modelling the dynamics in comparison with the experimental data
- …