5,536 research outputs found

    HepData and JetWeb: HEP data archiving and model validation

    Get PDF
    The CEDAR collaboration is extending and combining the JetWeb and HepData systems to provide a single service for tuning and validating models of high-energy physics processes. The centrepiece of this activity is the fitting by JetWeb of observables computed from Monte Carlo event generator events against their experimentally determined distributions, as stored in HepData. Caching the results of the JetWeb simulation and comparison stages provides a single cumulative database of event generator tunings, fitted against a wide range of experimental quantities. An important feature of this integration is a family of XML data formats, called HepML.Comment: 4 pages, 0 figures. To be published in proceedings of CHEP0

    Are Optically-Selected Quasars Universally X-Ray Luminous? X-Ray/UV Relations in Sloan Digital Sky Survey Quasars

    Full text link
    We analyze archived Chandra and XMM-Newton X-ray observations of 536 Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5) quasars (QSOs) at 1.7 <= z <= 2.7 in order to characterize the relative UV and X-ray spectral properties of QSOs that do not have broad UV absorption lines (BALs). We constrain the fraction of X-ray weak, non-BAL QSOs and find that such objects are rare; for example, sources underluminous by a factor of 10 comprise \la2% of optically-selected SDSS QSOs. X-ray luminosities vary with respect to UV emission by a factor of \la2 over several years for most sources. UV continuum reddening and the presence of narrow-line absorbing systems are not strongly associated with X-ray weakness in our sample. X-ray brightness is significantly correlated with UV emission line properties, so that relatively X-ray weak, non-BAL QSOs generally have weaker, blueshifted CIVλ\lambda1549 emission and broader CIII]λ\lambda1909 lines. The CIV emission line strength depends on both UV and X-ray luminosity, suggesting that the physical mechanism driving the global Baldwin effect is also associated with X-ray emission.Comment: Accepted to Ap

    Neon and Sulfur Abundances of Planetary Nebulae in the Magellanic Clouds

    Get PDF
    The chemical abundances of neon and sulfur for 25 planetary nebulae (PNe) in the Magellanic Clouds are presented. These abundances have been derived using mainly infrared data from the Spitzer Space Telescope. The implications for the chemical evolution of these elements are discussed. A comparison with similarly obtained abundances of Galactic PNe and HII regions and Magellanic Clouds HII regions is also given. The average neon abundances are 6.0x10(-5) and 2.7x10(-5) for the PNe in the Large and Small Magellanic Clouds respectively. These are ~1/3 and 1/6 of the average abundances of Galactic planetary nebulae to which we compare. The average sulfur abundances for the LMC and SMC are respectively 2.7x10(-6) and 1.0x10(-6). The Ne/S ratio (23.5) is on average higher than the ratio found in Galactic PNe (16) but the range of values in both data sets is similar for most of the objects. The neon abundances found in PNe and HII regions agree with each other. It is possible that a few (3-4) of the PNe in the sample have experienced some neon enrichment, but for two of these objects the high Ne/S ratio can be explained by their very low sulfur abundances. The neon and sulfur abundances derived in this paper are also compared to previously published abundances using optical data and photo-ionization models.Comment: 13 pages, 4 tables, 5 figures. Accepted for publication in Ap

    Large Magellanic Cloud Planetary Nebula Morphology: Probing Stellar Populations and Evolution

    Get PDF
    Planetary Nebulae (PNe) in the Large Magellanic Cloud (LMC) offer the unique opportunity to study both the Population and evolution of low- and intermediate-mass stars, by means of the morphological type of the nebula. Using observations from our LMC PN morphological survey, and including images available in the HST Data Archive, and published chemical abundances, we find that asymmetry in PNe is strongly correlated with a younger stellar Population, as indicated by the abundance of elements that are unaltered by stellar evolution (Ne, Ar, S). While similar results have been obtained for Galactic PNe, this is the first demonstration of the relationship for extra-galactic PNe. We also examine the relation between morphology and abundance of the products of stellar evolution. We found that asymmetric PNe have higher nitrogen and lower carbon abundances than symmetric PNe. Our two main results are broadly consistent with the predictions of stellar evolution if the progenitors of asymmetric PNe have on average larger masses than the progenitors of symmetric PNe. The results bear on the question of formation mechanisms for asymmetric PNe, specifically, that the genesis of PNe structure should relate strongly to the Population type, and by inference the mass, of the progenitor star, and less strongly on whether the central star is a member of a close binary system.Comment: The Astrophysical Journal Letters, in press 4 figure

    Human Amniocytes Are Receptive to Chemically Induced Reprogramming to Pluripotency

    Get PDF
    Restoring pluripotency using chemical compounds alone would be a major step forward in developing clinical-grade pluripotent stem cells, but this has not yet been reported in human cells. We previously demonstrated that VPA_ AFS cells, human amniocytes cultivated with valproic acid (VPA) acquired functional pluripotency while remaining distinct from human embryonic stem cells (hESCs), questioning the relationship between the modulation of cell fate and molecular regulation of the pluripotency network. Here, we used single-cell analysis and functional assays to reveal that VPA treatment resulted in a homogeneous population of self-renewing non-transformed cells that fulfill the hallmarks of pluripotency, i.e., a short G1 phase, a dependence on glycolytic metabolism, expression of epigenetic modifications on histones 3 and 4, and reactivation of endogenous OCT4 and downstream targets at a lower level than that observed in hESCs. Mechanistic insights into the process of VPA-induced reprogramming revealed that it was dependent on OCT4 promoter activation, which was achieved independently of the PI3K (phosphatidylinositol 3-kinase)/ AKT/ mTOR (mammalian target of rapamycin) pathway or GSK3 beta inhibition but was concomitant with the presence of acetylated histones H3K9 and H3K56, which promote pluripotency. Our data identify, for the first time, the pluripotent transcriptional and molecular signature and metabolic status of human chemically induced pluripotent stem cells

    Schubert calculus of Richardson varieties stable under spherical Levi subgroups

    Full text link
    We observe that the expansion in the basis of Schubert cycles for H∗(G/B)H^*(G/B) of the class of a Richardson variety stable under a spherical Levi subgroup is described by a theorem of Brion. Using this observation, along with a combinatorial model of the poset of certain symmetric subgroup orbit closures, we give positive combinatorial descriptions of certain Schubert structure constants on the full flag variety in type AA. Namely, we describe cu,vwc_{u,v}^w when uu and vv are inverse to Grassmannian permutations with unique descents at pp and qq, respectively. We offer some conjectures for similar rules in types BB and DD, associated to Richardson varieties stable under spherical Levi subgroups of SO(2n+1,\C) and SO(2n,\C), respectively.Comment: Section 4 significantly shortened, and other minor changes made as suggested by referees. Final version, to appear in Journal of Algebraic Combinatoric

    Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    Get PDF
    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis

    Central Stars of Planetary Nebulae in the Large Magellanic Cloud: A Far-UV Spectroscopic Analysis

    Full text link
    We observed seven central stars of planetary nebulae (CSPN) in the Large Magellanic Cloud (LMC) with the Far Ultraviolet Spectroscopic Explorer (FUSE), and performed a model-based analysis of these spectra in conjunction with Hubble Space Telescope (HST) spectra in the UV and optical range to determine the stellar and nebular parameters. Most of the objects show wind features, and they have effective temperatures ranging from 38 to 60 kK with mass-loss rates of ~= 5x10^-8 Msun/yr. Five of the objects have typical LMC abundances. One object (SMP LMC 61) is a [WC4] star, and we fit its spectra with He/C/O-rich abundances typical of the [WC] class, and find its atmosphere to be iron-deficient. Most objects have very hot (T ~> 2000 K) molecular hydrogen in their nebulae, which may indicate a shocked environment. One of these (SMP LMC 62) also displays OVI 1032-38 nebular emission lines, rarely observed in PN.Comment: 53 pages, 15 figures (11 color). Accepted for publication in Ap

    Chemical Abundances of Planetary Nebulae in the Sagittarius Dwarf Elliptical Galaxy

    Get PDF
    Spectrophotometry and imaging of the two planetary nebulae He2-436 and Wray16-423, recently discovered to be in the Sagittarius dwarf elliptical galaxy, are presented. Wray16-423 is a high excitation planetary nebula (PN) with a hot central star. In contrast He2-436 is a high density PN with a cooler central star and evidence of local dust, the extinction exceeding that for Wray16-423 by E(B-V)=0.28. The extinction to Wray16-423, (E(B-V)=0.14), is consistent with the extinction to the Sagittarius (Sgr) Dwarf. Both PN show Wolf-Rayet features in their spectra, although the lines are weak in Wray16-423. Images in [O III] and H-alpha+[N II], although affected by poor seeing, yield a diameter of 1.2'' for Wray16-423 after deconvolution; He~2-436 was unresolved. He2-436 has a luminosity about twice that of Wray16-423 and its size and high density suggest a younger PN. In order to reconcile the differing luminosity and nebular properties of the two PN with similar age progenitor stars, it is suggested that they are on He burning tracks The abundance pattern is very similar in both nebulae and shows an oxygen depletion of -0.4 dex with respect to the mean O abundance of Galactic PN and [O/H] = -0.6. The Sgr PN progenitor stars are representative of the higher metallicity tail of the Sgr population. The pattern of abundance depletion is similar to that in the only other PN in a dwarf galaxy companion of the Milky Way, that in Fornax, for which new spectra are presented. However the abundances are larger than for Galactic halo PN suggesting a later formation age. The O abundance of the Sgr galaxy deduced from its PN, shows similarities with that of dwarf ellipticals around M31, suggesting that this galaxy was a dwarf elliptical before its interaction with the Milky Way.Comment: 24 pages, Latex (aas2pp4.sty) including 5 postscript figures. To appear in Ap

    Complete Genome Sequences of Paenibacillus Larvae Phages BN12, Dragolir, Kiel007, Leyra, Likha, Pagassa, PBL1c, and Tadhana

    Get PDF
    We present here the complete genomes of eight phages that infect Paenibacillus larvae, the causative agent of American foulbrood in honeybees. Phage PBL1c was originally isolated in 1984 from a P. larvae lysogen, while the remaining phages were isolated in 2014 from bee debris, honeycomb, and lysogens from three states in the USA
    • 

    corecore