6,735 research outputs found

    Lyman-alpha absorption around nearby galaxies

    Full text link
    We have used STIS aboard HST to search for Lyman-alpha (Lya) absorption lines in the outer regions of eight nearby galaxies using background QSOs and AGN as probes. Lya lines are detected within a few hundred km/s of the systemic velocity of the galaxy in all cases. We conclude that a background line-of-sight which passes within 26-200 h-1 kpc of a foreground galaxy is likely to intercept low column density neutral hydrogen with log N(HI) >~ 13.0. The ubiquity of detections implies a covering factor of ~ 100% for low N(HI) gas around galaxies within 200 h-1 kpc. We discuss the difficulty in trying to associate individual absorption components with the selected galaxies and their neighbors, but show that by degrading our STIS data to lower resolutions, we are able to reproduce the anti-correlation of Lya equivalent width and impact parameter found at higher redshift. We also show that the equivalent width and column density of Lya complexes (when individual components are summed over ~ 1000 km/s) correlate well with a simple estimate of the volume density of galaxies brighter than M(B) = -17.5 at the same redshift as a Lya complex. We do not reject the hypothesis that the selected galaxies are directly responsible for the observed Lya lines, but our analysis indicates that absorption by clumpy intragroup gas is an equally likely explanation. (Abriged)Comment: Accepted for publication in Nov 20, 2002 issue of ApJ. Paper with all figures can be found at http://www.astro.princeton.edu/~dvb/lyapaper.ps (preferable). Minor typos fixe

    Weighted network modules

    Get PDF
    The inclusion of link weights into the analysis of network properties allows a deeper insight into the (often overlapping) modular structure of real-world webs. We introduce a clustering algorithm (CPMw, Clique Percolation Method with weights) for weighted networks based on the concept of percolating k-cliques with high enough intensity. The algorithm allows overlaps between the modules. First, we give detailed analytical and numerical results about the critical point of weighted k-clique percolation on (weighted) Erdos-Renyi graphs. Then, for a scientist collaboration web and a stock correlation graph we compute three-link weight correlations and with the CPMw the weighted modules. After reshuffling link weights in both networks and computing the same quantities for the randomised control graphs as well, we show that groups of 3 or more strong links prefer to cluster together in both original graphs.Comment: 19 pages, 7 figure

    Whole genome sequencing-based mapping and candidate identification of mutations from fixed zebrafish tissue

    Get PDF
    As forward genetic screens in zebrafish become more common, the number of mutants that cannot be identified by gross morphology or through transgenic approaches, such as many nervous system defects, has also increased. Screening for these difficult-to-visualize phenotypes demands techniques such as whole-mount in situ hybridization (WISH) or antibody staining, which require tissue fixation. To date, fixed tissue has not been amenable for generating libraries for whole genome sequencing (WGS). Here, we describe a method for using genomic DNA from fixed tissue and a bioinformatics suite for WGS-based mapping of zebrafish mutants. We tested our protocol using two known zebrafish mutant alleles, gpr126st49 and egr2bfh227, both of which cause myelin defects. As further proof of concept we mapped a novel mutation, stl64, identified in a zebrafish WISH screen for myelination defects. We linked stl64 to chromosome 1 and identified a candidate nonsense mutation in the F-box and WD repeat domain containing 7 (fbxw7) gene. Importantly, stl64 mutants phenocopy previously described fbxw7vu56 mutants, and knockdown of fbxw7 in wild-type animals produced similar defects, demonstrating that stl64 disrupts fbxw7. Together, these data show that our mapping protocol can map and identify causative lesions in mutant screens that require tissue fixation for phenotypic analysis

    The ins and outs of participation in a weather information system

    Get PDF
    In this paper our aim is to show even though access to technology, information or data holds the potential for improved participation, participation is wired into a larger network of actors, artefacts and information practices. We draw on a case study of a weather information system developed and implemented by a non-profit organisation to both describe the configuration of participation, but also critically assess inclusion and exclusion. We present a set of four questions - a basic, practical toolkit - by which we together with the organisation made sense of and evaluated participation in the system

    Neon and Sulfur Abundances of Planetary Nebulae in the Magellanic Clouds

    Get PDF
    The chemical abundances of neon and sulfur for 25 planetary nebulae (PNe) in the Magellanic Clouds are presented. These abundances have been derived using mainly infrared data from the Spitzer Space Telescope. The implications for the chemical evolution of these elements are discussed. A comparison with similarly obtained abundances of Galactic PNe and HII regions and Magellanic Clouds HII regions is also given. The average neon abundances are 6.0x10(-5) and 2.7x10(-5) for the PNe in the Large and Small Magellanic Clouds respectively. These are ~1/3 and 1/6 of the average abundances of Galactic planetary nebulae to which we compare. The average sulfur abundances for the LMC and SMC are respectively 2.7x10(-6) and 1.0x10(-6). The Ne/S ratio (23.5) is on average higher than the ratio found in Galactic PNe (16) but the range of values in both data sets is similar for most of the objects. The neon abundances found in PNe and HII regions agree with each other. It is possible that a few (3-4) of the PNe in the sample have experienced some neon enrichment, but for two of these objects the high Ne/S ratio can be explained by their very low sulfur abundances. The neon and sulfur abundances derived in this paper are also compared to previously published abundances using optical data and photo-ionization models.Comment: 13 pages, 4 tables, 5 figures. Accepted for publication in Ap

    Human Amniocytes Are Receptive to Chemically Induced Reprogramming to Pluripotency

    Get PDF
    Restoring pluripotency using chemical compounds alone would be a major step forward in developing clinical-grade pluripotent stem cells, but this has not yet been reported in human cells. We previously demonstrated that VPA_ AFS cells, human amniocytes cultivated with valproic acid (VPA) acquired functional pluripotency while remaining distinct from human embryonic stem cells (hESCs), questioning the relationship between the modulation of cell fate and molecular regulation of the pluripotency network. Here, we used single-cell analysis and functional assays to reveal that VPA treatment resulted in a homogeneous population of self-renewing non-transformed cells that fulfill the hallmarks of pluripotency, i.e., a short G1 phase, a dependence on glycolytic metabolism, expression of epigenetic modifications on histones 3 and 4, and reactivation of endogenous OCT4 and downstream targets at a lower level than that observed in hESCs. Mechanistic insights into the process of VPA-induced reprogramming revealed that it was dependent on OCT4 promoter activation, which was achieved independently of the PI3K (phosphatidylinositol 3-kinase)/ AKT/ mTOR (mammalian target of rapamycin) pathway or GSK3 beta inhibition but was concomitant with the presence of acetylated histones H3K9 and H3K56, which promote pluripotency. Our data identify, for the first time, the pluripotent transcriptional and molecular signature and metabolic status of human chemically induced pluripotent stem cells

    The Low- and Intermediate-Mass Stellar Population in the Small Magellanic Cloud: The Central Stars of Planetary Nebulae

    Full text link
    We present a study on the central stars (CSs) of Planetary Nebulae (PNe) observed in the Small Magellanic Cloud (SMC) with the Space Telescope Imaging Spectrograph instrument on-board the HST. The stellar magnitudes have been measured using broad-band photometry, and Zanstra analysis of the nebulae provided the stellar temperatures. From the location of the CSs on the HR diagram, and by comparing the observed CSs with current models of stellar evolution, we infer the CSs masses. We examine closely the possibility of light contamination in the bandpass from an unrecognized stellar companion, and we establish strong constraints on the existence and nature of any binary companion. We find an average mass of 0.63 Msun, which is similar to the mass obtained for a sample of CSs in the LMC (0.65 Msun). However, the SMC and LMC CS mass distributions differ slightly, the SMC sample lacking an intermediate-mass stellar population (0.65 to 0.75 Msun). We discuss the significance and possible reasons for the difference between the two mass distributions. In particular, we consider the differences in the star formation history between the clouds and the mass-loss rate dependence on metallicity.Comment: 30 pages, 6 figures, 5 tables. To be published in ApJ (October 20
    corecore