745 research outputs found

    Progress Towards Modeling the Ablation Response of NuSil-Coated PICA

    Get PDF
    The Mars Science Laboratory (MSL) Entry, Descent and Landing Instrumentation (MEDLI) collected in-flight data largely used by the ablation community to verify and validate physics-based models for the response of the Phenolic Impregnated Carbon Ablator (PICA) material [1-4]. MEDLI data were recently used to guide the development of NASAs high-fidelity material response models for PICA, implemented in the Porous material Analysis Toolbox based on OpenFOAM (PATO) software [5-6]. A follow-up instrumentation suite, MEDLI2, is planned for the upcoming Mars 2020 mission [7] after the large scientific impact of MEDLI. Recent analyses performed as part of MEDLI2 development draw the attention to significant effects of a protective coating to the aerothermal response of PICA. NuSil, a silicone-based overcoat sprayed onto the MSL heatshield as contamination control, is currently neglected in PICA ablation models. To mitigate the spread of phenolic dust from PICA, NuSil was applied to the entire MSL heatshield, including the MEDLI plugs. NuSil is a space grade designation of the siloxane copolymer, primarily used to protect against atomic oxygen erosion in the Low Earth Orbit environment. Ground testing of PICA-NuSil (PICA-N) models all exhibited surface temperature jumps of the order of 200 K due to oxide scale formation and subsequent NuSil burn-off. It is therefore critical to include a model for the aerothermal response of the coating in ongoing code development and validation efforts

    Computational Materials Techniques for Thermal Protection Solutions: Materials and Process Design

    Get PDF
    Integrated computational materials techniques that span the atomistic and continuum scales have the potential to aid the design and manufacturing of thermal protection materials. Two cases demonstrating the practical application of these methods are discussed. Case one examines the selection of a high temperature coating for carbon/carbon, with the target application being a solar thermal propulsion heat exchanger. The performance of various refractory metal and metal-carbide coatings is characterized considering extreme thermal (3500 K) and chemical (hydrogen flows) conditions. The recession rate, hydrogen leakage, and likelihood of mechanical failure are characterized and provide directions for further experimental investigation. Case two examines the process optimization of a heat shield material composed of a woven silica fiber preform and cyanate ester resin. Frequently, internal voids were found to be present in this composite after the resin infusion and curing stages of manufacturing. Using the manufacturing conditions, computations indicate that both water adsorption and resin cure shrinkage are contributing factors to void formation. The results suggest an alternative process configuration for curing that would mitigate voids

    Phenolic Polymer Interactions with Water and Ethylene Glycol Solvents

    Get PDF
    Interactions between pre-cured phenolic polymer chains and a solvent have a significant impact on the structure and properties of the final post-cured phenolic resin. Developing an understanding of the nature of these interactions is important and will aid in the selection of the proper solvent that will lead to the desired final product. Here, we investigate the role of the phenolic chain structure and the solvent type on the overall solvation performance of the system through ab initio techniques and molecular dynamics simulations. Two types of solvents are considered: ethylene glycol (EGL) and H2O. Three phenolic chain structures are considered, including two novolac-type chains with either an ortho-ortho (OON) or an ortho-para (OPN) backbone network and a resole-type (RES) chain with an ortho-ortho network. Each system is characterized through a structural analysis of the solvation shell and the hydrogen-bonding environment as well as through a quantification of the solvation free energy along with partitioned interaction energies between specific molecular species. The combination of simulations and the analyses indicate that EGL provides a higher solvation free energy than H2O due to more energetically favorable hydrophilic interactions as well as favorable hydrophobic interactions between CH element groups. In addition, the phenolic chain structure significantly affects the solvation performance, with OON having limited intermolecular hydrogen-bond formations, while OPN and RES interact more favorably with the solvent molecules. The results suggest that a resole-type phenolic chain with an ortho-para network should have the best solvation performance in EGL, H2O, and other similar solvents

    Phenolic Polymer Solvation in Water and Ethylene Glycol, I: Molecular Dynamics Simulations

    Get PDF
    Interactions between pre-cured phenolic polymer chains and a solvent have a significant impact on the structure and properties of the final post-cured phenolic resin. Developing an understanding of the nature of these interactions is important and will aid in the selection of the proper solvent that will lead to the desired final product. Here, we investigate the role of phenolic chain structure and solvent type on the overall solvation performance of the system through molecular dynamics simulations. Two types of solvents are considered, ethylene glycol (EGL) and H2O. In addition, three phenolic chain structures were considered including two novolac-type chains with either an ortho-ortho (OON) or ortho-para (OPN) backbone network and a resole-type (RES) chain with an ortho-ortho network. Each system is characterized through structural analysis of the solvation shell and hydrogen bonding environment as well as through quantification of the solvation free energy along with partitioned interaction energies between specific molecular species. The combination of the simulations and analyses indicate that EGL provides a larger solvation free energy than H2O due to more energetically favorable hydrophilic interactions as well as favorable hydrophobic interactions between CH element groups. In addition, phenolic chain structure significantly impacts solvation performance with OON having limited intermolecular hydrogen bond formations while OPN and RES interact more favorably with the solvent molecules. The results suggest that a resole-type phenolic chain with an ortho-para network should have the best solvation performance in EGL, H2O, and other similar solvents

    Towards the Prediction of the Mars 2020 Heatshield Material Response

    Get PDF
    Introduction: NASAs next mission to Mars, the Mars 2020, will use the same heatshield of the Mars Science Laboratory (MSL) for thermal protection during entry, descent and landing. The heatshield is a tiled system made of Phenolic Impregnated Carbon Ablators (PICA) blocks [1]. PICA is a lightweight carbon fiber/polymeric resin material that offers excellent performances for protecting probes during planetary entry. The Mars Entry Descent and Landing Instrument (MEDLI) suite on MSL offers unique in-flight validation data for models of atmospheric entry and material response. MEDLI recorded, among others, time-resolved in-depth temperature data of PICA using thermocouple sensors assembled in the MEDLI Integrated Sensor Plugs (MISP). The objective of this work is to compare the thermal response of the MSL heatshield to the MISP flight data. In preparation to Mars 2020 post-flight analysis, the predictive material response capability is benchmarked against MEDLI flight data

    Heatshield Entry Modeling Using a Design, Analysis, and Optimization Toolbox

    Get PDF
    The Mars Science Laboratory (MSL) was protected during its Mars atmospheric entry by an instrumented heatshield that used NASA's Phenolic Impregnated Carbon Ablator (PICA). PICA is a lightweight carbon fiber/polymeric resin material that offers excellent performances for protecting probes during planetary entry. The Mars Entry Descent and Landing Instrument (MEDLI) suite on MSL offers unique in-flight validation data for models of atmospheric entry and material response. MEDLI recorded, among others, time-resolved in-depth temperature data of PICA using thermocouple sensors assembled in the MEDLI Integrated Sensor Plugs (MISP). The objective of this work is to showcase the capability of the Design, Analysis, and Optimization of Thermal Protection Materials (DAOTPM) software. DAO-TPM is a Python based framework that works as a link between mission design, aerothermal and radiative environment computation, Thermal Protection Systems (TPS) microstructure analysis, material response and optimization tools. The toolbox has a Graphical User Interface (GUI) that allows the user to build as well as run the various software and utilities used to design, analyze and optimize a heatshield during atmospheric entry

    Yield and Failure Behavior Investigated for Cross-linked Phenolic Resins Using Molecular Dynamics

    Get PDF
    Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on the glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission

    Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    Get PDF
    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis

    Progress Towards Modeling the Mars Science Laboratory PICA-NuSil Heatshield

    Get PDF
    The data collected by the Mars Science Laboratory (MSL) Entry, Descent and Landing Instrumentation, MEDLI, have become an established reference to assess the performance of engineering models of the Phenolic Impregnated Carbon Ablator (PICA) and to validate hypersonic computational fluid dynamics (CFD) tools for entry systems. MEDLI measurements are also extensively used as validation reference for current developments of high-fidelity material response models for PICA. So large has been the scientific output and impact of MEDLI that a follow-up instrumentation suite MEDLI2 is underway for the upcoming Mars 2020 mission.A feature neglected thus far in the modeling of the MSL heatshield, is the presence of a silicone-based room temperature vulcanizing coating designated NuSil CV-1144-0. NuSil was used to coat the entire MSL heatshield, including the MEDLI plugs, to mitigate the spread of phenolic dust from PICA, and limit contamination during clean room operations. NuSil CV-1144-0 is a space grade siloxane copolymer, designed as an oxygen protection barrier for extreme low temperature environment.Assessments conducted during MSL development demonstrated that the presence of NuSil had no adverse effect on the performance of PICA. However, evidence from ground testing of PICA-NuSil (PICA-N) models in the HyMETS arc-jet test facility suggests that the silicone changes the high temperature response of PICA. It is therefore critical to assess the importance of modeling the coating in ongoing code validation efforts

    Investigation of Structure and Transport in Li-Doped Ionic Liquid Electrolytes: [pyr14][TFSI], [pyr13][FSI] and [EMIM][BF4]

    Get PDF
    Ionic liquid electrolytes have been proposed as a means of improving the safety and cycling behavior of advanced lithium batteries; however, the properties of these electrolytes under high lithium doping are poorly understood. Here, we employ both polarizable molecular dynamics simulation and experiment to investigate the structure, thermodynamics and transport of three potential electrolytes, N-methyl-Nbutylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N- methyl-Npropylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-- methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt concentration and temperature. Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of x(sub Li) we find the presence of lithium aggregates. Furthermore, the computed density, diffusion, viscosity, and ionic conductivity show excellent agreement with experimental data. While the diffusion and viscosity exhibit a systematic decrease and increase, respectively, with increasing x(sub Li), the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of x(sub Li) is approximately 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1 - 0.3 mS/cm. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions, which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, we comment on the relative kinetics of Li(+) transport in each liquid and we present strong evidence for transport through anion exchange (hopping) as opposed to the net motion of Li(+) with its solvation shell (vehicular)
    • …
    corecore