Phenolic Polymer Interactions with Water and Ethylene Glycol Solvents

Justin B. Haskins,¹ Eric W. Bucholz,² Charles W. Bauschlicher,³ Joshua D. Monk,¹ John W. Lawson³

¹AMA, Inc., Thermal Protection Materials Branch, NASA Ames Research Center ²EAP, Thermal Protection Materials Branch, NASA Ames Research Center ³Thermal Protection Materials Branch, NASA Ames Research Center

256th ACS National Meeting | August 19-23, 2018 | Boston, MA

Ablative Heat Shields

Mars Science Lander

Ablative Composites for Re-entry (carbon fiber/phenolic matrix)

Stackpoole, et al. AIAA (2008)

Phenolic (SOA)

Cyanate Esters

New resin chemistries for heat shields require different solvents for processing

Phenolic Polymers

Polymers Solvents ortho-ortho novolac ethylene glycol 1 - ortho 2 — para OH HO ortho-para novolac water n ortho-ortho resole H_2O OH n

Design rules for SOA polymer and solvents

Outline

Ethylene glycol-phenolic dimer

Quantum Chemical Calibration: understand basic polymer-solvent interactions and benchmark MD models

- combination of DFT, MP2, CCSD(T)
- water and ethylene glycol dimers
- solvent-monomer dimers

Phenolic in Water

Molecular Dynamics Simulation: characterize polymer solubility in solvents

- OPLS-AA-SEI force field
- single polymers in large solvent boxes
- 500-100,000 solvent molecules
- polymers with 3-27 units

Outline

Ethylene glycol-phenolic dimer

Quantum Chemical Calibration: understand basic polymer-solvent interactions and benchmark MD models

- combination of DFT, MP2, CCSD(T)
- water and ethylene glycol dimers
- solvent-monomer dimers

Phenolic in Water

Molecular Dynamics Simulation: characterize polymer solubility in solvents

- OPLS-AA-SEI force field
- single polymers in large solvent boxes
- 500-100,000 solvent molecules
- polymers with 3-27 units

Conformers of Ethylene Glycol

Water and Ethylene Glycol Dimers

OPLS energetics within 2 kcal/mol of CCSD (T)

OPLS interactions within 2 kcal/mol of MP2/CBS

OPLS interactions within 3 kcal/mol of MP2/CBS

Outline

Ethylene glycol-phenolic dimer

Quantum Chemical Calibration: understand basic polymer-solvent interactions and benchmark MD models

- combination of DFT, MP2, CCSD(T)
- water and ethylene glycol dimers
- solvent-monomer dimers

Phenolic in Water

Molecular Dynamics Simulation: characterize polymer solubility in solvents

- OPLS-AA-SEI force field
- single polymers in large solvent boxes
- 500-100,000 solvent molecules
- polymers with 3-27 units

Phenolic in Water

Phenolic in Ethylene Glycol

Diffusion and viscosity of solvent strongly affect polymer dynamics

Polymer Diffusion

Simulation Time (ns)

Larger diffusion coefficients in water

Solvation Free Energy (kcal/mol)

Ethylene Glycol	-27.1	-53.1	-84.0
Water	-8.5	-23.8	-46.5

ortho-ortho novolac

ortho-para novolac

ortho-ortho resole

Polymers more soluble in ethylene glycol Resole most soluble polymer

Solvation structure governs properties

polymer = gray; O = yellow; C = green; H = white

Self hydrogen bonding in ortho-ortho systems Ortho-para novolac and ortho-ortho resole have free –OH groups

Three primary interactions found in polymer-ethylene glycol solvation; one type in polymer-water solvation

Hydrogen Bonding

Hydrogen bonding common to both solvents and most prevalent bonding

Hydrogen bonding more persistent in ethylene glycol

- OPLS-AA-SEI energetics agree with high accuracy CCSD(T) solvent computations
- •OPLS-AA-SEI polymer-solvent interactions within a few kcal/mol of MP2/CBS computations
- Ethylene glycol more readily solvates the polymers because of more, longer-lived hydrogen bonding than water
- Resole is more soluble than the novolac polymers: more hydrogen bonding and hydrophobic-hydrophobic interactions

Bucholz, et al. *JPCB* **121**, 2839 (2017) Bauschlicher, et al. *JPCB* **121**, 2852 (2017)

Questions?

Bucholz, et al. *JPCB* **121**, 2839 (2017) Bauschlicher, et al. *JPCB* **121**, 2852 (2017)