4 research outputs found
Transiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: the first Super-Earth with measured radius
We report the discovery of very shallow (DF/F = 3.4 10-4), periodic dips in
the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite,
which we interpret as due to the presence of a transiting companion. We
describe the 3-colour CoRoT data and complementary ground-based observations
that support the planetary nature of the companion. Methods. We use CoRoT color
information, good angular resolution ground-based photometric observations in-
and out- of transit, adaptive optics imaging, near-infrared spectroscopy and
preliminary results from Radial Velocity measurements, to test the diluted
eclipsing binary scenarios. The parameters of the host star are derived from
optical spectra, which were then combined with the CoRoT light curve to derive
parameters of the companion. We examine carefully all conceivable cases of
false positives, and all tests performed support the planetary hypothesis.
Blends with separation larger than 0.40 arcsec or triple systems are almost
excluded with a 8 10-4 risk left. We conclude that, as far as we have been
exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which
we derive a period of 0.853 59 +/- 3 10-5 day and a radius of Rp = 1.68 +/-
0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit
of 21 MEarth for the companion mass, supporting the finding.
CoRoT-7b is very likely the first Super-Earth with a measured radius.Comment: Accepted in Astronomy and Astrophysics; typos and language
corrections; version sent to the printer w few upgrade
Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7b: the first super-Earth with measured radius
Copyright © The European Southern Observatory (ESO)Aims. We report the discovery of very shallow (ΔF/F ≈ 3.4×10−4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as caused by a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion.
Methods. We used CoRoT colours information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy, and preliminary results from radial velocity measurements, to test the diluted eclipsing binary scenarios.
The parameters of the host star were derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion.
Results. We examined all conceivable cases of false positives carefully, and all the tests support the planetary hypothesis. Blends with separation >0.40'' or triple systems are almost excluded with a 8 × 10−4 risk left. We conclude that, inasmuch we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 ± 3 × 10−5 day and a radius of Rp = 1.68 ± 0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit of 21 MEarth for the companion mass, supporting the finding.
Conclusions. CoRoT-7b is very likely the first Super-Earth with a measured radius. This object illustrates what will probably become a common situation with missions such as Kepler, namely the need to establish the planetary origin of transits in the absence of a firm radial velocity detection and mass measurement. The composition of CoRoT-7b remains loosely constrained without a precise mass. A very high surface temperature on its irradiated face, ≈1800–2600 K at the substellar point, and a very low one, ≈50 K, on its dark face assuming no atmosphere, have been derived
The CoRoT satellite in flight: description and performance
International audienceContext. CoRoT is a space telescope dedicated to stellar seismology and the search for extrasolar planets. The mission is led by the CNES in association with French laboratories and has a large international participation. The European Space Agency (ESA), Austria, Belgium, and Germany contribute to the payload, and Spain and Brazil contribute to the ground segment. Development of the spacecraft, which is based on a PROTEUS low earth orbit (LEO) recurrent platform, commenced in October 2000, and the satellite was launched on December 27, 2006. Aims. The instrument and platform characteristics prior to launch have been described in ESA publication (SP-1306). In the present paper we explain the behaviour in flight, based on raw and corrected data. Methods. Five runs have been completed since January 2007. The data used here are essentially those acquired during the commissioning phase and from a long run that lasted 146 days. These enable us to give a complete overview of the instrument and platform behaviour for all environmental conditions. The ground based data processing is not described in detail because the most important method has been published elsewhere. Results. We show that the performance specifications are easily satisfied when the environmental conditions are favourable. Most of the perturbations, hence data corrections, are related to LEO perturbations: high energy particles inside the South Atlantic Anomaly (SAA), eclipses and temperature variations, and line of sight fluctuations due to the attitude control system. Straylight due to the reflected light from the earth, which is controlled by the telescope and baffle design, appears to be negligible