20 research outputs found

    Genetic engineering and molecular characterization of yeast strain expressing hybrid human-yeast squalene synthase as a tool for anti-cholesterol drug assessment

    Get PDF
    AIMS: The main objective of the study is molecular and biological characterization of the human-yeast hybrid squalene synthase (SQS), as a promising target for treatment of hypercholesterolaemia. METHODS AND RESULTS: The human-yeast hybrid SQS, with 67% amino acids, including the catalytic site derived from human enzyme, was expressed in Saccharomyces cerevisiae strain deleted of its own SQS gene. The constructed strain has a decreased level of sterols compared to the control strain. The mevalonate pathway and sterol biosynthesis genes are induced and the level of triacylglycerols is increased. Treatment of the strain with rosuvastatin or zaragozic acid, two mevalonate pathway inhibitors, decreased the amounts of squalene, lanosterol and ergosterol, and up-regulated expression of several genes encoding enzymes responsible for biosynthesis of ergosterol precursors. Conversely, expression of the majority genes implicated in the biosynthesis of other mevalonate pathway end products, ubiquinone and dolichol, was down-regulated. CONCLUSIONS: The S. cerevisiae strain constructed in this study enables to investigate the physiological and molecular effects of inhibitors on cell functioning. SIGNIFICANCE AND IMPACT OF THE STUDY: The yeast strain expressing hybrid SQS with the catalytic core of human enzyme is a convenient tool for efficient screening for novel inhibitors of cholesterol-lowering properties

    Investigating the Effects of Statins on Cellular Lipid Metabolism Using a Yeast Expression System

    Get PDF
    In humans, defects in lipid metabolism are associated with a number of severe diseases such as atherosclerosis, obesity and type II diabetes. Hypercholesterolemia is a primary risk factor for coronary artery disease, the major cause of premature deaths in developed countries. Statins are inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the key enzyme of the sterol synthesis pathway. Since yeast Saccharomyces cerevisiae harbours many counterparts of mammalian enzymes involved in lipid-synthesizing pathways, conclusions drawn from research with this single cell eukaryotic organism can be readily applied to higher eukaryotes. Using a yeast strain with deletions of both HMG1 and HMG2 genes (i.e. completely devoid of HMGR activity) with introduced wild-type or mutant form of human HMGR (hHMGR) gene we investigated the effects of statins on the lipid metabolism of the cell. The relative quantification of mRNA demonstrated a different effect of simvastatin on the expression of the wild-type and mutated hHMGR gene. GC/MS analyses showed a significant decrease of sterols and enhanced conversion of squalene and sterol precursors into ergosterol. This was accompanied by the mobilization of ergosterol precursors localized in lipid particles in the form of steryl esters visualized by confocal microscopy. Changes in the level of ergosterol and its precursors in cells treated with simvastatin depend on the mutation in the hHMGR gene. HPLC/MS analyses indicated a reduced level of phospholipids not connected with the mevalonic acid pathway. We detected two significant phenomena. First, cells treated with simvastatin develop an adaptive response compensating the lower activity of HMGR. This includes enhanced conversion of sterol precursors into ergosterol, mobilization of steryl esters and increased expression of the hHMGR gene. Second, statins cause a substantial drop in the level of glycerophospholipids

    The Suppressor of AAC2 Lethality SAL1 Modulates Sensitivity of Heterologously Expressed Artemia ADP/ATP Carrier to Bongkrekate in Yeast

    Get PDF
    The ADP/ATP carrier protein (AAC) expressed in Artemia franciscana is refractory to bongkrekate. We generated two strains of Saccharomyces cerevisiae where AAC1 and AAC3 were inactivated and the AAC2 isoform was replaced with Artemia AAC containing a hemagglutinin tag (ArAAC-HA). In one of the strains the suppressor of ΔAAC2 lethality, SAL1, was also inactivated but a plasmid coding for yeast AAC2 was included, because the ArAACΔsal1Δ strain was lethal. In both strains ArAAC-HA was expressed and correctly localized to the mitochondria. Peptide sequencing of ArAAC expressed in Artemia and that expressed in the modified yeasts revealed identical amino acid sequences. The isolated mitochondria from both modified strains developed 85% of the membrane potential attained by mitochondria of control strains, and addition of ADP yielded bongkrekate-sensitive depolarizations implying acquired sensitivity of ArAAC-mediated adenine nucleotide exchange to this poison, independent from SAL1. However, growth of ArAAC-expressing yeasts in glycerol-containing media was arrested by bongkrekate only in the presence of SAL1. We conclude that the mitochondrial environment of yeasts relying on respiratory growth conferred sensitivity of ArAAC to bongkrekate in a SAL1-dependent manner. © 2013 Wysocka-Kapcinska et al

    Expression and structural characterization of peripherin/RDS, a membrane protein implicated in photoreceptor outer segment morphology

    Get PDF
    Peripherin/RDS is a member of the tetraspanin family of integral membrane proteins and plays a major role in the morphology of photoreceptor outer segments. Peripherin/RDS has a long extracellular loop (hereafter referred to as the LEL domain), which is vital for its function. Point mutations in the LEL domain often lead to impaired photoreceptor formation and function, making peripherin/RDS an important drug target. Being a eukaryotic membrane protein, acquiring sufficient peripherin/RDS for biophysical characterisation represents a significant challenge. Here, we describe the expression and characterisation of peripherin/RDS in Drosophila melangolaster Schneider (S2) insect cells and in the methylotrophic yeast Pichia pastoris. The wild-type peripherin/RDS and the retinitis pigmentosa causing P216L mutant from S2 cells are characterised using circular dichroism (CD) spectroscopy. The structure of peripherin/RDS and of a pathogenic mutant is assessed spectroscopically for the first time. These findings are evaluated in relation to a three-dimensional model of the functionally important LEL domain obtained by protein threading

    Defining the pathogenesis of human mtDNA mutations using a yeast model : the case of T8851C

    Get PDF
    More and more mutations are found in the mitochondrial DNA of various patients but ascertaining their pathogenesis is often difficult. Due to the conservation of mitochondrial function from yeast to humans, the unique ability of yeast to survive without production of ATP by oxidative phosphorylation, and the amenability of the yeast mitochondrial genome to site-directed mutagenesis, yeast is an excellent model for investigating the consequences of specific human mtDNA mutations. Here we report the construction of a yeast model of a point mutation (T8851C) in the mitochondrially-encoded subunit a/6 of the ATP synthase that has been associated with bilateral striatal lesions, a group of rare human neurological disorders characterized by symmetric degeneration of the corpus striatum. The biochemical consequences of this mutation are unknown. The T8851C yeast displayed a very slow growth phenotype on non-fermentable carbon sources, both at 28°C (the optimal temperature for yeast growth) and at 36°C. Mitochondria from T8851C yeast grown in galactose at 28°C showed a 60% deficit in ATP production. When grown at 36°C the rate of ATP synthesis was below 5% that of the wild-type, indicating that heat renders the mutation much more deleterious. At both growth temperatures, the mutant F1FO complex was correctly assembled but had only very weak ATPase activity (about 10% that of the control), both in mitochondria and after purification. These findings indicate that a block in the proton-translocating domain of the ATP synthase is the primary cause of the neurological disorder in the patients carrying the T8851C mutation

    Nile Red staining of yeast lipid particles.

    No full text
    <p>Visualization of membranes composed of glycerophospholipids (red emission) and neutral lipids, triacyglycerols and steryl esters, in lipid particles (green emission). Cells were cultured overnight. The media were then supplemented with either 100 µM simvastatin or buffer and the cells were further grown with shaking for two hours at 30°C. To localize neutral lipids and glycerophospholipids in yeast cells, Nile Red staining was performed. Horizontal panels: upper glycrophospholipids at 543 nm excitation and 610 nm emission, middle neutral lipids at 488 nm excitation and 515/530 nm emission, lower merge of above panels. Vertical panels: B cells cultivated in buffer, S cells incubated for 2 h in buffer with simvastatin.</p

    Two dimensional chromatography of glycerophospholipids.

    No full text
    <p>The levels of all major glycerophospholipids were diminished by treatment with simvastatin. Panels: 1, 3, 5 glycerophospholipids from cells harbouring the wild-type yeast, or the wild-type or mutated <i>hHMGR</i> gene, respectively. Panels 2, 4, 6 glycerophospholipids from simvastatin treated cells harbouring the wild-type yeast, or the wild-type or mutated <i>hHMGR</i> gene, respectively. Abbreviations: PC phosphtidylcholine, PE phosphtidylethanolamine, PS phosphatidylserine, PI phosphtidylinositol, PA phosphtidic acid, LP lysoglycerophospholipid, FA fatty acid, NL neutral lipids.</p

    Decrease in sterols and squalene after simvastatin treatment.

    No full text
    <p>Lipids extracted from yeast cells were subjected to alkaline hydrolysis, purified and analysed by GC/MS.</p><p>Wt, wild-type yeast; H, yeast harbouring wild-type <i>hHMGR</i> gene; h, yeast harbouring the mutated <i>hHMGR</i> gene.</p
    corecore