1,093 research outputs found

    The Quasar-frame Velocity Distribution of Narrow CIV Absorbers

    Full text link
    We report on a survey for narrow (FWHM < 600 km/s) CIV absorption lines in a sample of bright quasars at redshifts 1.8≤z<2.251.8 \le z < 2.25 in the Sloan Digital Sky Survey. Our main goal is to understand the relationship of narrow CIV absorbers to quasar outflows and, more generally, to quasar environments. We determine velocity zero-points using the broad MgII emission line, and then measure the absorbers' quasar-frame velocity distribution. We examine the distribution of lines arising in quasar outflows by subtracting model fits to the contributions from cosmologically intervening absorbers and absorption due to the quasar host galaxy or cluster environment. We find a substantial number (≥43±6\ge 43\pm6 per cent) of absorbers with REW >0.3> 0.3 \AA in the velocity range +750 km/s \la v \la +12000 km/s are intrinsic to the AGN outflow. This `outflow fraction' peaks near v=+2000v=+2000 km/s with a value of foutflow≃0.81±0.13f_{outflow} \simeq 0.81 \pm 0.13. At velocities below v≈+2000v \approx +2000 km/s the incidence of outflowing systems drops, possibly due to geometric effects or to the over-ionization of gas that is nearer the accretion disk. Furthermore, we find that outflow-absorbers are on average broader and stronger than cosmologically-intervening systems. Finally, we find that ∼14\sim 14 per cent of the quasars in our sample exhibit narrow, outflowing CIV absorption with REW >0.3> 0.3\AA, slightly larger than that for broad absorption line systems.Comment: 11 pages, 9 figures, accepted for publication in MNRA

    21st Century Changes in U.S. Heavy Precipitation Frequency Based on Resolved Atmospheric Patterns

    Get PDF
    Gridded precipitation-gauge observations and global atmospheric reanalysis are combined to develop an analogue method for detecting the occurrence of heavy precipitation events based on the prevailing large-scale atmospheric conditions. Combinations of different atmospheric variables for circulation features (geopotential height and wind vector) and moisture plumes (surface specific humidity, column precipitable water, and precipitable water up to 500hPa) are examined to construct the analogue schemes for the winter (DJF) of the Pacific Coast California (PCCA) and the summer (JJA) of the Midwestern United States (MWST). The detection diagnostics of various analogue schemes are calibrated with 27-yr (1979–2005) and then validated with 9-yr (2006–2014) NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA). All of the analogue schemes are found to significantly improve upon MERRA precipitation in characterizing the number and interannual variations of observed heavy precipitation events in the MWST which is one of weakest regions for MERRA summer precipitation. When evaluated with the late 20th century simulations from an ensemble of climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5), all analogue schemes produce model medians of heavy precipitation frequency that are more consistent with observations and have smaller inter-model discrepancies when compared with the model-based precipitation. Further, the performances of analogue schemes with vector winds are comparable to those of geopotential height, and no analogue scheme with one of three water vapor content variables is clearly superior to another. Under two radiative forcing scenarios (Representative Concentration Pathways 4.5 and 8.5), the CMIP5-based analogue schemes produce a trend in the occurrence of heavy events through the 21st century consistent with the model-based precipitation, but with smaller inter-model disparity. The strongest reduction in the disparity of the results is seen for the RCP8.5 scenario. The median trends in DJF heavy precipitation frequency for PCCA are positive, but for JJA heavy event frequency over the MWST region, the median trends are slightly negative. Overall, the presented analyses highlight the potential of the analogue as a powerful diagnostic tool for model deficiencies and its complementarity to an evaluation that considers modeled precipitation alone to assess heavy precipitation frequency. The consistency found here between projections from analogues and model precipitation increases confidence in projected heavy precipitation frequency changes in a warming climate.This work was funded by the NASA Energy and Water Cycle Study Research Announcement (NNH07ZDA001N) and MacroSystems Biology Program Grant (NSF-AES EF#1137306) from the National Science Foundation

    The ESO UVES Advanced Data Products Quasar Sample - VI. Sub-Damped Lyman-α\alpha Metallicity Measurements and the Circum-Galactic Medium

    Full text link
    The Circum-Galactic Medium (CGM) can be probed through the analysis of absorbing systems in the line-of-sight to bright background quasars. We present measurements of the metallicity of a new sample of 15 sub-damped Lyman-α\alpha absorbers (sub-DLAs, defined as absorbers with 19.0 < log N(H I) < 20.3) with redshift 0.584 < zabs\rm z_{abs} < 3.104 from the ESO Ultra-Violet Echelle Spectrograph (UVES) Advanced Data Products Quasar Sample (EUADP). We combine these results with other measurements from the literature to produce a compilation of metallicity measurements for 92 sub-DLAs as well as a sample of 362 DLAs. We apply a multi-element analysis to quantify the amount of dust in these two classes of systems. We find that either the element depletion patterns in these systems differ from the Galactic depletion patterns or they have a different nucleosynthetic history than our own Galaxy. We propose a new method to derive the velocity width of absorption profiles, using the modeled Voigt profile features. The correlation between the velocity width delta_V90 of the absorption profile and the metallicity is found to be tighter for DLAs than for sub-DLAs. We report hints of a bimodal distribution in the [Fe/H] metallicity of low redshift (z < 1.25) sub-DLAs, which is unseen at higher redshifts. This feature can be interpreted as a signature from the metal-poor, accreting gas and the metal-rich, outflowing gas, both being traced by sub-DLAs at low redshifts.Comment: 64 pages, 31 figures, 27 tables. Submitted to MNRA

    Benefits of greenhouse gas mitigation on the supply, management, and use of water resources in the United States

    Get PDF
    Climate change impacts on water resources in the United States are likely to be far-reaching and substantial because the water is integral to climate, and the water sector spans many parts of the economy. This paper estimates impacts and damages from five water resource-related models addressing runoff, drought risk, economics of water supply/demand, water stress, and flooding damages. The models differ in the water system assessed, spatial scale, and unit of assessment, but together provide a quantitative and descriptive richness in characterizing water sector effects that no single model can capture. The results, driven by a consistent set of greenhouse gas (GHG) emission and climate scenarios, examine uncertainty from emissions, climate sensitivity, and climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, broad conclusions can be drawn regarding patterns of change and benefits of GHG mitigation. Four key findings emerge: 1) GHG mitigation substantially reduces hydro-climatic impacts on the water sector; 2) GHG mitigation provides substantial national economic benefits in water resources related sectors; 3) the models show a strong signal of wetting for the Eastern US and a strong signal of drying in the Southwest; and 4) unmanaged hydrologic systems impacts show strong correlation with the change in magnitude and direction of precipitation and temperature from climate models, but managed water resource systems and regional economic systems show lower correlation with changes in climate variables due to non-linearities created by water infrastructure and the socio-economic changes in non-climate driven water demand

    The BTC40 Survey for Quasars at 4.8 < z < 6

    Full text link
    The BTC40 Survey for high-redshift quasars is a multicolor search using images obtained with the Big Throughput Camera (BTC) on the CTIO 4-m telescope in V, I, and z filters to search for quasars at redshifts of 4.8 < z < 6. The survey covers 40 sq. deg. in B, V, & I and 36 sq. deg. in z. Limiting magnitudes (3 sigma) reach to V = 24.6, I = 22.9 and z = 22.9. We used the (V-I) vs. (I-z) two-color diagram to select high-redshift quasar candidates from the objects classified as point sources in the imaging data. Follow-up spectroscopy with the AAT and CTIO 4-m telescopes of candidates having I < 21.5 has yielded two quasars with redshifts of z = 4.6 and z = 4.8 as well as four emission line galaxies with z = 0.6. Fainter candidates have been identified down to I = 22 for future spectroscopy on 8-m class telescopes.Comment: 27 pages, 8 figures; Accepted for publication in the Astronomical Journa

    Quantum Probabilistic Subroutines and Problems in Number Theory

    Full text link
    We present a quantum version of the classical probabilistic algorithms aˋ\grave{a} la Rabin. The quantum algorithm is based on the essential use of Grover's operator for the quantum search of a database and of Shor's Fourier transform for extracting the periodicity of a function, and their combined use in the counting algorithm originally introduced by Brassard et al. One of the main features of our quantum probabilistic algorithm is its full unitarity and reversibility, which would make its use possible as part of larger and more complicated networks in quantum computers. As an example of this we describe polynomial time algorithms for studying some important problems in number theory, such as the test of the primality of an integer, the so called 'prime number theorem' and Hardy and Littlewood's conjecture about the asymptotic number of representations of an even integer as a sum of two primes.Comment: 9 pages, RevTex, revised version, accepted for publication on PRA: improvement in use of memory space for quantum primality test algorithm further clarified and typos in the notation correcte
    • …
    corecore