68 research outputs found

    Automatic detection and counting of retina cell nuclei using deep learning

    Full text link
    The ability to automatically detect, classify, calculate the size, number, and grade of retinal cells and other biological objects is critically important in eye disease like age-related macular degeneration (AMD). In this paper, we developed an automated tool based on deep learning technique and Mask R-CNN model to analyze large datasets of transmission electron microscopy (TEM) images and quantify retinal cells with high speed and precision. We considered three categories for outer nuclear layer (ONL) cells: live, intermediate, and pyknotic. We trained the model using a dataset of 24 samples. We then optimized the hyper-parameters using another set of 6 samples. The results of this research, after applying to the test datasets, demonstrated that our method is highly accurate for automatically detecting, categorizing, and counting cell nuclei in the ONL of the retina. Performance of our model was tested using general metrics: general mean average precision (mAP) for detection; and precision, recall, F1-score, and accuracy for categorizing and counting.Comment: 13 pages, 11 figures, 2 tables, SPIE. Medical Imaging 2020 Conferenc

    Presence of rd8 mutation does not alter the ocular phenotype of late-onset retinal degeneration mouse model.

    Get PDF
    PurposeA spontaneous frameshift mutation, c.3481delC, in the Crb1 gene is the underlying cause of dysplasia and retinal degeneration in rd8 mice. The rd8 mutation is found in C57BL/6N but not in C57BL/6J mouse sub-strains. The development of ocular pathology in single knockout Ccl2-/-, Cx3cr1-/- and in double knockout Ccl2-/-, Cx3cr1-/- mice raised on a C57BL/6 background has been reported to depend on the presence of a rd8 mutation. In this study, we investigated the influence of the rd8 mutation on the retinal pathology that we previously described in the late-onset retinal degeneration (L-ORD) mouse model with a heterozygous S163R mutation in the C1q-tumor necrosis factor-related protein-5Ctrp5+/- gene that was generated on a C57BL/6J background.MethodsMouse lines carrying the Ctrp5 S163R and rd8 mutations (Ctrp5+/-;rd8/rd8), corresponding controls without the rd8 mutation (Ctrp5+/-;wt/wt), and wild-type mice with and without the rd8 mutation (Wtrd8/rd8 and Wtwt/wt, respectively) were generated by systematic breeding of mice in our L-ORD mouse colony. Genotyping the mice for the rd8 (del C at nt3481 in Crb1) and Ctrp5 S163R mutations was performed with allelic PCR or sequencing. Retinal morphology was studied with fundus imaging, histology, light microscopy, electron microscopy, and immunohistochemistry.ResultsGenotype analysis of the mice in L-ORD mouse colony detected the rd8 mutation in the homozygous and heterozygous state. Fundus imaging of wild-type mice without the rd8 mutation (Wtwt/wt) revealed no autofluorescence (AF) spots up to 6-8 months and few AF spots at 21 months. However, the accumulation of AF lesions accelerated with age in the Ctrp5+/- mice that lack the rd8 mutation (Ctrp5+/-;wt/wt). The number of AF lesions was significantly increased (p<0.001), and they were small and uniformly distributed throughout the retina in the 21-month-old Ctrp5+/-;wt/wt mice when compared to the age-matched controls. Wild-type and Ctrp5+/- mice with the rd8 mutation (Wtrd8/rd8 and Ctrp5+/-;rd8/rd8, respectively) revealed an integrated retinal architecture with well-defined outer segments/inner segments (OS/IS), outer nuclear layer (ONL), outer plexiform layer (OPL), and inner nuclear layer (INL). The presence of pseudorosette structures reported in the rd8 mice between the ONL and the INL in the ventral quadrant of the retina was not observed in all genotypes studied. Further, the external limiting membrane was continuous in the Ctrp5+/-;rd8/rd8 and Wtrd8/rd8 mice. Evaluation of the retinal phenotype revealed that the Ctrp5+/-;wt/wt mice developed characteristic L-ORD pathology including age-dependent accumulation of AF spots, development of sub-retinal, sub-RPE, and basal laminar deposits, and Bruch's membrane abnormalities at older age, while these changes were not observed in the age-matched littermate WTwt/wt mice.ConclusionsThe Wtrd8/rd8 and Ctrp5+/-;rd8/rd8 mice raised on C57BL/6J did not develop early onset retinal changes that are characteristic of the rd8 phenotype, supporting the hypothesis that manifestation of rd8-associated pathology depends on the genetic background. The retinal pathology observed in mice with the Ctrp5+/-;wt/wt genotype is consistent with the L-ORD phenotype observed in patients and with the phenotype we described previously. The lack of rd8-associated retinal pathology in the Ctrp5+/-;wt/wt mouse model raised on the C57BL/6J background and the development of the L-ORD phenotype in these mice in the presence and absence of the rd8 mutation suggests that the pathology observed in the Ctrp5+/-;wt/wt mice is primarily associated with the S163R mutation in the Ctrp5 gene

    An Overview of Glaucoma: Bidirectional Translation between Humans and Pre-Clinical Animal Models

    Get PDF
    Glaucoma is a multifactorial, polygenetic disease with a shared outcome of loss of retinal ganglion cells and their axons, which ultimately results in blindness. The most common risk factor of this disease is elevated intraocular pressure (IOP), although many glaucoma patients have IOPs within the normal physiological range. Throughout disease progression, glial cells in the optic nerve head respond to glaucomatous changes, resulting in glial scar formation as a reaction to injury. This chapter overviews glaucoma as it affects humans and the quest to generate animal models of glaucoma so that we can better understand the pathophysiology of this disease and develop targeted therapies to slow or reverse glaucomatous damage. This chapter then reviews treatment modalities of glaucoma. Revealed herein is the lack of non-IOP-related modalities in the treatment of glaucoma. This finding supports the use of animal models in understanding the development of glaucoma pathophysiology and treatments

    In situ gel of triamcinolone acetonide-loaded solid lipid nanoparticles for improved topical ocular delivery: Tear kinetics and ocular disposition studies

    Get PDF
    © 2019 The Authors Objective: The purpose of this systematic review is to summarize the best available evidence on interventions that could be implemented in the college environment to increase HPV vaccination uptake in college students who were not previously vaccinated. Methods: Pubmed, CINAHL, PsycINFO, Cochrane, and EBSCO were searched in December 2017 to identify all literature meeting the following criteria: human subjects, English language, HPV, HPV vaccination, and college. PRISMA recommendations were followed. We focused only on manuscripts that reported vaccine uptake, excluding studies that only reported vaccine intentions. We identified 2989 articles; 101 relevant after screening; nine eligible for final qualitative review. Results: Vaccine uptake rates ranged from 5% to 53%. Theory-based variables (e.g., perceived susceptibility and self-efficacy)were associated with vaccine uptake in most studies. A study exposing participants to a narrative video about HPV vaccination led by a combination of peers and medical experts produced the greatest difference in HPV vaccination initiation compared to a control group (21.8% vs 11.8%)of all the studies reviewed. Conclusions: Few interventions resulted in substantial HPV vaccine uptake. A combination of peer and provider encouragement may be the most effective method to increase vaccine uptake in this population

    Gellan gum based sol-to-gel transforming system of natamycin transfersomes improves topical ocular delivery

    Get PDF
    © 2019 John Wiley & Sons Ltd Aim: Mesophotic coral ecosystems (MCEs) are unique communities that support a high proportion of depth-endemic species distinct from shallow-water coral reefs. However, there is currently little consensus on the boundaries between shallow and mesophotic coral reefs and between upper versus lower MCEs because studies of these communities are often site specific. Here, we examine the ecological evidence for community breaks, defined here as species loss, in fish and benthic taxa between shallow reefs and MCEs globally. Location: Global MCEs. Time period: 1973–2017. Major taxa studied: Macrophytes, Porifera, Scleractinia, Hydrozoa, Octocorallia, Antipatharia and teleost fishes. Methods: We used random-effects models and breakpoint analyses on presence/absence data to identify regions of higher than expected species loss along a depth gradient of 1–69 m, based on a meta-analysis of 26 studies spanning diverse photoautotrophic and heterotrophic taxa. We then investigated the extent to which points of high faunal turnover can be explained by environmental factors, including light, temperature and nutrient availability. Results: We found evidence for a community break, indicated by a significant loss of shallow-water taxa, at ~ 60 m across several taxonomically and functionally diverse benthic groups and geographical regions. The breakpoint in benthic composition is best explained by decreasing light, which is correlated with the optical depths between 10 and 1% of surface irradiance. A concurrent shift in the availability of nutrients, both dissolved and particulate organic matter, and a shift from photoautotroph to heterotroph-dominated assemblages also occurs at ~ 60 m depth. Main conclusions: We found evidence for global community breaks across multiple benthic taxa at ~ 60 m depth, indicative of distinct community transitions between shallow and mesophotic coral ecosystems. Changes in the underwater light environment and the availability of trophic resources along the depth gradient are the most parsimonious explanations for the observed patterns

    Systems genetics identifies a role for Cacna2d1 regulation in elevated intraocular pressure and glaucoma susceptibility

    Get PDF
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article�s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article�s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Glaucoma is a multi-factorial blinding disease in which genetic factors play an important role. Elevated intraocular pressure is a highly heritable risk factor for primary open angle glaucoma and currently the only target for glaucoma therapy. Our study helps to better understand underlying genetic and molecular mechanisms that regulate intraocular pressure, and identifies a new candidate gene, Cacna2d1, that modulates intraocular pressure and a promising therapeutic, pregabalin, which binds to CACNA2D1 protein and lowers intraocular pressure significantly. Because our study utilizes a genetically diverse population of mice with known sequence variants, we are able to determine that the intraocular pressure-lowering effect of pregabalin is dependent on the Cacna2d1 haplotype. Using human genome-wide association study (GWAS) data, evidence for association of a CACNA2D1 single-nucleotide polymorphism and primary open angle glaucoma is found. Importantly, these results demonstrate that our systems genetics approach represents an efficient method to identify genetic variation that can guide the selection of therapeutic targets

    Splash!: a prospective birth cohort study of the impact of environmental, social and family-level influences on child oral health and obesity related risk factors and outcomes

    Get PDF
    Background: Dental caries (decay) is the most prevalent disease of childhood. It is often left untreated and can impact negatively on general health, and physical, developmental, social and learning outcomes. Similar to other health issues, the greatest burden of dental caries is seen in those of low socio-economic position. In addition, a number of diet-related risk factors for dental caries are shared risk factors for the development of childhood obesity. These include high and frequent consumption of refined carbohydrates (predominately sugars), and soft drinks and other sweetened beverages, and low intake of (fluoridated) water. The prevalence of childhood obesity is also at a concerning level in most countries and there is an opportunity to determine interventions for addressing both of these largely preventable conditions through sustainable and equitable solutions. This study aims to prospectively examine the impact of drink choices on child obesity risk and oral health status.Methods/Design: This is a two-stage study using a mixed methods research approach. The first stage involves qualitative interviews of a sub-sample of recruited parents to develop an understanding of the processes involved in drink choice, and inform the development of the Discrete Choice Experiment analysis and the measurement instruments to be used in the second stage. The second stage involves the establishment of a prospective birth cohort of 500 children from disadvantaged communities in rural and regional Victoria, Australia (with and without water fluoridation). This longitudinal design allows measurement of changes in the child&rsquo;s diet over time, exposure to fluoride sources including water, dental caries progression, and the risk of childhood obesity.Discussion: This research will provide a unique contribution to integrated health, education and social policy and program directions, by providing clearer policy relevant evidence on strategies to counter social and environmental factors which predispose infants and children to poor health, wellbeing and social outcomes; and evidence-based strategies to promote health and prevent disease through the adoption of healthier lifestyles and diet. Further, given the absence of evidence on the processes and effectiveness of contemporary policy implementation, such as community water fluoridation in rural and regional communities it&rsquo;s approach and findings will be extremelyinformative.<br /

    Systems genetics identifies a role for Cacna2d1 regulation in elevated intraocular pressure and glaucoma susceptibility

    Get PDF
    Glaucoma is a multi-factorial blinding disease in which genetic factors play an important role. Elevated intraocular pressure is a highly heritable risk factor for primary open angle glaucoma and currently the only target for glaucoma therapy. Our study helps to better understand underlying genetic and molecular mechanisms that regulate intraocular pressure, and identifies a new candidate gene, Cacna2d1, that modulates intraocular pressure and a promising therapeutic, pregabalin, which binds to CACNA2D1 protein and lowers intraocular pressure significantly. Because our study utilizes a genetically diverse population of mice with kno

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore