8 research outputs found

    Towards understanding the antagonistic activity of phytic acid against common foodborne bacterial pathogens using a general linear model.

    No full text
    The increasing challenge of antibiotic resistance requires not only the discovery of new antibiotics, but also the development of new alternative approaches. Therefore, in the present study, we investigated for the first time the antibacterial potential of phytic acid (myo-inositol hexakisphosphate, IP6), a natural molecule that is 'generally recognized as safe' (FDA classification), against the proliferation of common foodborne bacterial pathogens such as Listeria monocytogenes, Staphylococcus aureus and Salmonella Typhimurium. Interestingly, compared to citric acid, IP6 was found to exhibit significantly greater inhibitory activity (P<0.05) against these pathogenic bacteria. The minimum inhibitory concentration of IP6 varied from 0.488 to 0.97 mg/ml for the Gram-positive bacteria that were tested, and was 0.244 mg/ml for the Gram-negative bacteria. Linear and general models were used to further explore the antibacterial effects of IP6. The developed models were validated using experimental growth data for L. monocytogenes, S. aureus and S. Typhimurium. Overall, the models were able to accurately predict the growth of L. monocytogenes, S. aureus, and S. Typhimuriumin Polymyxin acriflavine lithium chloride ceftazidime aesculin mannitol (PALCAM), Chapman broth, and xylose lysine xeoxycholate (XLD) broth, respectively. Remarkably, the early logarithmic growth phase of S. Typhimurium showed a rapid and severe decrease in a period of less than one hour, illustrating the bactericidal effect of IP6. These results suggest that IP6 is an efficient antibacterial agent and can be used to control the proliferation of foodborne pathogens. It has promising potential for environmentally friendly applications in the food industry, such as for food preservation, food safety, and for prolonging shelf life

    Antibacterial and antioxidant properties of mixed linkage beta-oligosaccharides from extracted β-glucan hydrolysed by <i>Penicillium occitanis</i> EG<sub>L</sub> lichenase

    No full text
    <p>The aim of this study was first to ascertain the chemical composition and the physicochemical properties of cereal extracted β-glucan from barley flour. Secondly, to assess the antioxidant properties and the antibacterial properties of extracted β-glucan hydrolysates. The proximate composition, FT-IR and scanning electron microscopy of extracted β-Glucan were studied. Hydrolysates from extracted β-glucan, obtained by lichenase EG<sub>L</sub> from <i>Penicillium occitanis</i>, were a mixed linkage beta-oligosaccharides (MLBO) of trisaccharides and tetrasaccharides. MLBO showed a DPPH radical scavenger with IC50 about 1.8 ± 0.01 mg/mL whereas the IC50 of extracted β-glucan was about 5 ± 0.01 mg/mL. MLBO showed a high antioxidative capacity (175 μmol/mL α-tocopherol equivalents) at 5 mg/mL. The antimicrobial activity was confirmed against all tested bacteria especially at 20 mg/mL of MLBO while no inhibition was observed for all the strains used after the addition of either EG<sub>L</sub> or extracted β-glucan.</p
    corecore