19 research outputs found

    The Rich-Club Phenomenon In The Internet Topology

    Get PDF
    We show that the Internet topology at the Autonomous System (AS) level has a rich--club phenomenon. The rich nodes, which are a small number of nodes with large numbers of links, are very well connected to each other. The rich--club is a core tier that we measured using the rich--club connectivity and the node--node link distribution. We obtained this core tier without any heuristic assumption between the ASes. The rich--club phenomenon is a simple qualitative way to differentiate between power law topologies and provides a criterion for new network models. To show this, we compared the measured rich--club of the AS graph with networks obtained using the Barab\'asi--Albert (BA) scale--free network model, the Fitness BA model and the Inet--3.0 model.Comment: To be appeared in the IEEE Communications Letter

    Accurately modeling the Internet topology

    Get PDF
    Based on measurements of the Internet topology data, we found out that there are two mechanisms which are necessary for the correct modeling of the Internet topology at the Autonomous Systems (AS) level: the Interactive Growth of new nodes and new internal links, and a nonlinear preferential attachment, where the preference probability is described by a positive-feedback mechanism. Based on the above mechanisms, we introduce the Positive-Feedback Preference (PFP) model which accurately reproduces many topological properties of the AS-level Internet, including: degree distribution, rich-club connectivity, the maximum degree, shortest path length, short cycles, disassortative mixing and betweenness centrality. The PFP model is a phenomenological model which provides a novel insight into the evolutionary dynamics of real complex networks.Comment: 20 pages and 17 figure

    Using a Bayesian approach to reconstruct graph statistics after edge sampling

    Full text link
    Often, due to prohibitively large size or to limits to data collecting APIs, it is not possible to work with a complete network dataset and sampling is required. A type of sampling which is consistent with Twitter API restrictions is uniform edge sampling. In this paper, we propose a methodology for the recovery of two fundamental network properties from an edge-sampled network: the degree distribution and the triangle count (we estimate the totals for the network and the counts associated with each edge). We use a Bayesian approach and show a range of methods for constructing a prior which does not require assumptions about the original network. Our approach is tested on two synthetic and three real datasets with diverse sizes, degree distributions, degree-degree correlations and triangle count distributions.Comment: Extended version of the paper accepted in Complex Networks 202

    Increment of specific heat capacity of solar salt with SiO2 nanoparticles

    Get PDF
    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.Universitat Jaume I (project P1-1B2013-43
    corecore