56 research outputs found

    Impact of fluid distribution and petrophysics on geophysical signatures of CO2 storage sandstone reservoirs

    Get PDF
    Carbon Capture and Storage (CCS) is a key element to achieving net-zero energy challenge timely. CCS operations require the integration of geophysical data, such as seismic and electromagnetic surveys, numerical reservoir models and fluid flow simulations. However, the 10–100s m resolution of seismic imaging methods complicates the mapping of smaller scale rock heterogeneities, while borehole measurements commonly show large fluctuations at sub-cm scales. In this study, we combine laboratory data, well-logging, rock physics theories and a proof-of-concept time-lapse seismic modeling to assess the effect of pore-scale fluid distribution and petrophysical heterogeneities on the expected performance of whole-reservoir CCS operations in deep saline aquifers, by analogy to the Aurora CCS site, North Sea. We monitored the elastic and electrical properties of three sandstone samples with slightly different physical and petrographic properties during carbon dioxide (CO2) flow-through tests under equivalent in situ effective pressure. We inferred the CO2-induced damage in the rocks from the variations of their hydromechanical properties. We found that the clay fraction, CO2-clay chemical interactions, and porosity were the main factors affecting both the CO2 distribution in the samples and the hydromechanical response. We used seismic modeling of well-log data and the laboratory results to estimate the reservoir-scale time-lapse seismic response to CO2 injection and to assess the effect of the rock heterogeneities in our interpretation. The results show that disregarding the effect of rock heterogeneities on the CO2-brine fluids distribution can lead to significant misinterpretations of seismic monitoring surveys during CCS operations in terms of both CO2 quantification and distribution

    A Study of Reconfigurable Accelerators for Cloud Computing

    Get PDF
    Due to the exponential increase in network traffic in the data centers, thousands of servers interconnected with high bandwidth switches are required. Field Programmable Gate Arrays (FPGAs) with Cloud ecosystem offer high performance in efficiency and energy, making them active resources, easy to program and reconfigure. This paper looks at FPGAs as reconfigurable accelerators for the cloud computing presents the main hardware accelerators that have been presented in various widely used cloud computing applications such as: MapReduce, Spark, Memcached, Databases

    Nanostructures, Technology, Research, and Applications

    Get PDF
    Contains reports on the nanostructures laboratory, eighteen research projects and a list of publications.Joint Services Electronics Program Grant DAAH04-95-1-0038Semiconductor Research Corporation Contract 95-LJ-550National Science Foundation Grant ECS 94-07078U.S. Army Research Office Grant DAAH04-95-1-0564Defense Advanced Research Projects Agency/Naval Air Systems Command Contract N00019-95-K-0131National Aeronautics and Space Administration Contract NAS8-38249National Aeronautics and Space Administration Grant NAGW-2003IBM Corporation Contract 1622U.S. Navy- Office of Naval Research Grant N00014-95-1-1297U.S. Army Research Office Grant DAAH04-94-G-0377U.S. Air Force - Office of Scientific Research Grant F-49-620-92-J-0064U.S. Air Force - Office of Scientific Research Grant F-49-620-95-1-031

    GlaciStore: understanding Late Cenozoic glaciation and basin processes for the development of secure large scale offshore CO2 storage (North Sea).

    Get PDF
    The sedimentary strata of the North Sea Basin (NSB) record the glacial and interglacial history of environmental change in the Northern Hemisphere, and are a proposed location for the engineered storage of carbon dioxide (CO2) captured from power plant and industrial sources to reduce greenhouse gas emissions. These aspects interact in the geomechanical and fluid flow domain, as ice sheet dynamics change the properties of potential seal and reservoir rocks that are the prospective geological storage strata for much of Europe’s captured CO2. The central part of the NSB preserves a unique history of the depositional record spanning at least the last 3 Ma, which also forms the overburden and uppermost seal to the underlying CO2 reservoirs. There is good evidence that these ice sheets created strong feedback loops that subsequently affected the evolution of the Quaternary climate system through complex ocean-atmosphere-cryosphere linkages

    Tigers of Sundarbans in India: Is the Population a Separate Conservation Unit?

    Get PDF
    The Sundarbans tiger inhabits a unique mangrove habitat and are morphologically distinct from the recognized tiger subspecies in terms of skull morphometrics and body size. Thus, there is an urgent need to assess their ecological and genetic distinctiveness and determine if Sundarbans tigers should be defined and managed as separate conservation unit. We utilized nine microsatellites and 3 kb from four mitochondrial DNA (mtDNA) genes to estimate genetic variability, population structure, demographic parameters and visualize historic and contemporary connectivity among tiger populations from Sundarbans and mainland India. We also evaluated the traits that determine exchangeability or adaptive differences among tiger populations. Data from both markers suggest that Sundarbans tiger is not a separate tiger subspecies and should be regarded as Bengal tiger (P. t. tigris) subspecies. Maximum likelihood phylogenetic analyses of the mtDNA data revealed reciprocal monophyly. Genetic differentiation was found stronger for mtDNA than nuclear DNA. Microsatellite markers indicated low genetic variation in Sundarbans tigers (He= 0.58) as compared to other mainland populations, such as northern and Peninsular (Hebetween 0.67- 0.70). Molecular data supports migration between mainland and Sundarbans populations until very recent times. We attribute this reduction in gene flow to accelerated fragmentation and habitat alteration in the landscape over the past few centuries. Demographic analyses suggest that Sundarbans tigers have diverged recently from peninsular tiger population within last 2000 years. Sundarbans tigers are the most divergent group of Bengal tigers, and ecologically non-exchangeable with other tiger populations, and thus should be managed as a separate "evolutionarily significant unit" (ESU) following the adaptive evolutionary conservation (AEC) concept.Wildlife Institute of India, Dehra Dun (India)

    The miR-35-41 Family of MicroRNAs Regulates RNAi Sensitivity in Caenorhabditis elegans

    Get PDF
    RNA interference (RNAi) utilizes small interfering RNAs (siRNAs) to direct silencing of specific genes through transcriptional and post-transcriptional mechanisms. The siRNA guides can originate from exogenous (exo–RNAi) or natural endogenous (endo–RNAi) sources of double-stranded RNA (dsRNA). In Caenorhabditis elegans, inactivation of genes that function in the endo–RNAi pathway can result in enhanced silencing of genes targeted by siRNAs from exogenous sources, indicating cross-regulation between the pathways. Here we show that members of another small RNA pathway, the mir-35-41 cluster of microRNAs (miRNAs) can regulate RNAi. In worms lacking miR-35-41, there is reduced expression of lin-35/Rb, the C. elegans homolog of the tumor suppressor Retinoblastoma gene, previously shown to regulate RNAi responsiveness. Genome-wide microarray analyses show that targets of endo–siRNAs are up-regulated in mir-35-41 mutants, a phenotype also displayed by lin-35/Rb mutants. Furthermore, overexpression of lin-35/Rb specifically rescues the RNAi hypersensitivity of mir-35-41 mutants. Although the mir-35-41 miRNAs appear to be exclusively expressed in germline and embryos, their effect on RNAi sensitivity is transmitted to multiple tissues and stages of development. Additionally, we demonstrate that maternal contribution of miR-35-41 or lin-35/Rb is sufficient to reduce RNAi effectiveness in progeny worms. Our results reveal that miRNAs can broadly regulate other small RNA pathways and, thus, have far reaching effects on gene expression beyond directly targeting specific mRNAs

    Submicron and Nanometer Structures Technology and Research

    Get PDF
    Contains reports on twenty research projects and a list of publications.Defense Advanced Research Projects Agency Contract N00019-92-K-0021Joint Services Electronics Program Contract DAAL03-92-C-0001National Science Foundation Grant ECS 90-16437U.S. Army Research Office Grant DAAL03-92-G-0291IBM CorporationU.S. Air Force - Office of Scientific Research Grant F49620-92-J-0064National Science Foundation Grant DMR 87-19217National Science Foundation Grant DMR 90-22933Defense Advanced Research Projects Agency Consortium for Superconducting ElectronicsNational Aeronautics and Space Administration Contract NAS8-36748National Aeronautics and Space Administration Grant NAGW-200

    Nanostructures, Technology, Research, and Applications

    Get PDF
    Contains reports on twenty research projects and a list of publications.Joint Services Electronics Program Grant DAAH04-95-1-0038National Science Foundation Grant ECS-94-07078Semiconductor Research CorporationU.S. Army Research Office Grant DAAH04-95-1-0564Defense Advanced Research Projects Agency/Naval Air Systems Command Contract N00019-95-K-0131National Aeronautics and Space Administration Contract NAS8-38249National Aeronautics and Space Administration Grant NAGW-2003IBM Corporation Contract 1622National Science Foundation Graduate FellowshipU.S. Navy - Office of Naval Research Grant N00014-95-1-1297U.S. Army Research Office Contract DAAH04-94-G-0377U.S. Air Force - Office of Scientific Research Grant F49620-92-J-0064U.S. Air Force - Office of Scientific Research Grant F49620-95-1-0311National Science Foundation Contract DMR 94-0034U.S. Air Force - Office of Scientific Research Contract F49620-96-0126Harvard-Smithsonian Astrophysical Observatory Contract SV630304National Aeronautics and Space Administration Grant NAG5-5105Los Alamos National Laboratory Contract E57800017-9

    Geoeconomic variations in epidemiology, ventilation management, and outcomes in invasively ventilated intensive care unit patients without acute respiratory distress syndrome: a pooled analysis of four observational studies

    Get PDF
    Background: Geoeconomic variations in epidemiology, the practice of ventilation, and outcome in invasively ventilated intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) remain unexplored. In this analysis we aim to address these gaps using individual patient data of four large observational studies. Methods: In this pooled analysis we harmonised individual patient data from the ERICC, LUNG SAFE, PRoVENT, and PRoVENT-iMiC prospective observational studies, which were conducted from June, 2011, to December, 2018, in 534 ICUs in 54 countries. We used the 2016 World Bank classification to define two geoeconomic regions: middle-income countries (MICs) and high-income countries (HICs). ARDS was defined according to the Berlin criteria. Descriptive statistics were used to compare patients in MICs versus HICs. The primary outcome was the use of low tidal volume ventilation (LTVV) for the first 3 days of mechanical ventilation. Secondary outcomes were key ventilation parameters (tidal volume size, positive end-expiratory pressure, fraction of inspired oxygen, peak pressure, plateau pressure, driving pressure, and respiratory rate), patient characteristics, the risk for and actual development of acute respiratory distress syndrome after the first day of ventilation, duration of ventilation, ICU length of stay, and ICU mortality. Findings: Of the 7608 patients included in the original studies, this analysis included 3852 patients without ARDS, of whom 2345 were from MICs and 1507 were from HICs. Patients in MICs were younger, shorter and with a slightly lower body-mass index, more often had diabetes and active cancer, but less often chronic obstructive pulmonary disease and heart failure than patients from HICs. Sequential organ failure assessment scores were similar in MICs and HICs. Use of LTVV in MICs and HICs was comparable (42\ub74% vs 44\ub72%; absolute difference \u20131\ub769 [\u20139\ub758 to 6\ub711] p=0\ub767; data available in 3174 [82%] of 3852 patients). The median applied positive end expiratory pressure was lower in MICs than in HICs (5 [IQR 5\u20138] vs 6 [5\u20138] cm H2O; p=0\ub70011). ICU mortality was higher in MICs than in HICs (30\ub75% vs 19\ub79%; p=0\ub70004; adjusted effect 16\ub741% [95% CI 9\ub752\u201323\ub752]; p<0\ub70001) and was inversely associated with gross domestic product (adjusted odds ratio for a US$10 000 increase per capita 0\ub780 [95% CI 0\ub775\u20130\ub786]; p<0\ub70001). Interpretation: Despite similar disease severity and ventilation management, ICU mortality in patients without ARDS is higher in MICs than in HICs, with a strong association with country-level economic status. Funding: No funding

    Nanostructures Technology, Research, and Applications

    Get PDF
    Contains reports on twenty-four research projects and a list of publications.Joint Services Electronics Program Grant DAAHO4-95-1-0038Defense Advanced Research Projects Agency/Semiconductor Research Corporation SA1645-25508PGU.S. Army Research Office Grant DAAHO4-95-1-0564Defense Advanced Research Projects Agency/U.S. Navy - Naval Air Systems Command Contract N00019-95-K-0131Suss Advanced Lithography P. O. 51668National Aeronautics and Space Administration Contract NAS8-38249National Aeronautics and Space Administration Grant NAGW-2003Defense Advanced Research Projects Agency/U.S. Army Research Office Grant DAAHO4-951-05643M CorporationDefense Advanced Research Projects Agency/U.S. Navy - Office of Naval Research Contract N66001-97-1-8909National Science Foundation Graduate FellowshipU.S. Army Research Office Contract DAAHO4-94-G-0377National Science Foundation Contract DMR-940034National Science Foundation Grant DMR 94-00334Defense Advanced Research Projects Agency/U.S. Air Force - Office of Scientific Research Contract F49620-96-1-0126Harvard-Smithsonian Astrophysical Observatory Contract SV630304National Aeronautics and Space Administration Grant NAG5-5105Los Alamos National Laboratory Contract E57800017-9GSouthwest Research Institute Contract 83832MIT Lincoln Laboratory Advanced Concepts ProgramMIT Lincoln Laboratory Contract BX-655
    corecore