5 research outputs found

    Evidence for long-term sensitization of the bowel in patients with post-infectious-IBS.

    Get PDF
    Post-infectious irritable bowel syndrome (PI-IBS) is a common gastrointestinal disorder characterized by persistent abdominal pain despite recovery from acute gastroenteritis. The underlying mechanisms are unclear, although long-term changes in neuronal function, and low grade inflammation of the bowel have been hypothesized. We investigated the presence and mechanism of neuronal sensitization in a unique cohort of individuals who developed PI-IBS following exposure to contaminated drinking water 7 years ago. We provide direct evidence of ongoing sensitization of neuronal signaling in the bowel of patients with PI-IBS. These changes occur in the absence of any detectable tissue inflammation, and instead appear to be driven by pro-nociceptive changes in the gut micro-environment. This is evidenced by the activation of murine colonic afferents, and sensitization responses to capsaicin in dorsal root ganglia (DRGs) following application of supernatants generated from tissue biopsy of patients with PI-IBS. We demonstrate that neuronal signaling within the bowel of PI-IBS patients is sensitized 2 years after the initial infection has resolved. This sensitization appears to be mediated by a persistent pro-nociceptive change in the gut micro-environment, that has the capacity to stimulate visceral afferents and facilitate neuronal TRPV1 signaling

    In vivo stabilization of a less toxic asparaginase variant leads to a durable anti-tumor response in acute leukemia

    No full text
    Asparagine is a non-essential amino acid since it can either be taken up via the diet or synthesized by asparagine synthetase (ASNS). Acute lymphoblastic leukemia (ALL) cells do not or minimally express ASNS which makes them completely dependent on extracellular asparagine for their growth and survival. This dependency makes ALL cells vulnerable to treatment with L-asparaginase, an enzyme that hydrolyzes asparagine. To date, all clinically approved L-asparaginases have a significant L-glutaminase co-activity, associated with non-immune related toxic side effects observed during therapy. Therefore, reduction of L-glutaminase co-activity with concomitant maintenance of its anti-cancer L-asparaginase effect may effectively improve the tolerability of this unique drug. Previously, we designed a new alternative variant of Erwinia chrysanthemi (ErA; Erwinaze) with decreased L-glutaminase co-activity, while maintaining its L-asparaginase activity, by the introduction of three key mutations around the active site (ErA-TM). However, Erwinaze and our ErA-TM variant have a very short half-life in vivo. Here, we show that the fusion of ErA-TM with an albumin binding domain (ABD)-tag significantly increases its in vivo persistence. In addition, we evaluated the in vivo therapeutic efficacy of ABD-ErA-TM in a B-ALL xenograft model of SUP-B15. Our results show a comparable long lasting durable anti-leukemic effect between the standard-of-care PEG-asparaginase and ABD-ErA-TM L-asparaginase, but with fewer co-glutaminase related acute side effects. Since the toxic side effects of current L-asparaginases often result in treatment discontinuation in ALL patients, this novel ErA-TM variant with ultra-low L-glutaminase co-activity and long in vivo persistence may have great clinical potential

    A novel L-asparaginase with low L-glutaminase coactivity is highly efficacious against both T- and B-cell acute lymphoblastic leukemias in vivo

    No full text
    Acute lymphoblastic leukemia (ALL) is the most common type of pediatric cancer, although about 4 of every 10 cases occur in adults. The enzyme drug L-asparaginase serves as a cornerstone of ALL therapy and exploits the asparagine dependency of ALL cells. In addition to hydrolyzing the amino acid L-asparagine, all FDA-approved L-asparaginases also have significant L-glutaminase coactivity. Since several reports suggest that L-glutamine depletion correlates with many of the side effects of these drugs, enzyme variants with reduced L-glutaminase coactivity might be clinically beneficial if their antileukemic activity would be preserved. Here we show that novel low L-glutaminase variants developed on the backbone of the FDA-approved Erwinia chrysanthemi L-asparaginase were highly efficacious against both T-and B-cell ALL, while displaying reduced acute toxicity features. These results support the development of a new generation of safer L-asparaginases without L-glutaminase activity for the treatment of human ALL. Significance: A newL-asparaginase-based therapy is less toxic compared with FDA-approved high L-glutaminase enzyme

    Local immune response to food antigens drives meal-induced abdominal pain

    No full text
    Up to 20% of people worldwide develop gastrointestinal symptoms following a meal1, leading to decreased quality of life, substantial morbidity and high medical costs. Although the interest of both the scientific and lay communities in this issue has increased markedly in recent years, with the worldwide introduction of gluten-free and other diets, the underlying mechanisms of food-induced abdominal complaints remain largely unknown. Here we show that a bacterial infection and bacterial toxins can trigger an immune response that leads to the production of dietary-antigen-specific IgE antibodies in mice, which are limited to the intestine. Following subsequent oral ingestion of the respective dietary antigen, an IgE- and mast-cell-dependent mechanism induced increased visceral pain. This aberrant pain signalling resulted from histamine receptor H1-mediated sensitization of visceral afferents. Moreover, injection of food antigens (gluten, wheat, soy and milk) into the rectosigmoid mucosa of patients with irritable bowel syndrome induced local oedema and mast cell activation. Our results identify and characterize a peripheral mechanism that underlies food-induced abdominal pain, thereby creating new possibilities for the treatment of irritable bowel syndrome and related abdominal pain disorders
    corecore