5 research outputs found

    Calmodulin-binding transcription activator 1 (CAMTA1) alleles predispose human episodic memory performance

    Get PDF
    Little is known about the genes and proteins involved in the process of human memory. To identify genetic factors related to human episodic memory performance, we conducted an ultra-high-density genome-wide screen at > 500000 single nucleotide polymorphisms (SNPs) in a sample of normal young adults stratified for performance on an episodic recall memory test. Analysis of this data identified SNPs within the calmodulin-binding transcription activator 1 (CAMTA1) gene that were significantly associated with memory performance. A follow up study, focused on the CAMTA1 locus in an independent cohort consisting of cognitively normal young adults, singled out SNP rs4908449 with a P-value of 0.0002 as the most significant associated SNP in the region. These validated genetic findings were further supported by the identification of CAMTA1 transcript enrichment in memory-related human brain regions and through a functional magnetic resonance imaging experiment on individuals matched for memory performance that identified CAMTA1 allele-specific upregulation of medial temporal lobe brain activity in those individuals harboring the ‘at-risk' allele for poorer memory performance. The CAMTA1 locus encodes a purported transcription factor that interfaces with the calcium-calmodulin system of the cell to alter gene expression patterns. Our validated genomic and functional biological findings described herein suggest a role for CAMTA1 in human episodic memor

    A CYP46 T/C SNP modulates parahippocampal and hippocampal morphology in young subjects

    Full text link
    There is evidence that brain cholesterol metabolism modulates the vulnerability for Alzheimer's disease (AD). Previous data showed that brain beta-amyloid load in elderly subjects with the CYP46 (cholesterol 24S-hydroxylase) TT-positive genotype was higher than in CYP46 TT-negative elderly subjects. We investigated effects of the CYP46 T/C polymorphism on parahippocampal and hippocampal grey matter (GM) morphology in 81 young subjects using structural magnetic resonance imaging based morphometry. We found that young TT-homozygotes exhibited smallest and CC-homozygotes largest parahippocampal and hippocampal GM volumes with the volumes of the CT-heterozygotes ranging in between. Parahippocampal and hippocampal volumes were positively correlated with delayed memory performance in C-carriers and negatively with immediate memory performance in TT-homozygotes. It has been shown that the brain cholesterol metabolism in general modulates dendrite outgrowth, synaptogenesis, and neuron survival, and it was suggested that CYP46 indirectly influences beta-amyloid metabolism. CYP46 C-carriers are privileged both in terms of beta-amyloid metabolism and in terms of brain reserve due to their larger parahippocampal and hippocampal structures. The exact cellular mechanisms that translate the CYP46 allelic variation into volumetric brain differences in the parahippocampal gyrus and hippocampus are still unknown and need to be further investigated

    Implicit associative learning engages the hippocampus and interacts with explicit associative learning

    Get PDF
    The hippocampus is crucial for conscious, explicit memory, but whether it is also involved in nonconscious, implicit memory is uncertain. We investigated with functional magnetic resonance imaging whether implicit learning engages the hippocampus and interacts with subsequent explicit learning. The presentation of subliminal faces-written profession pairs for implicit learning was followed by the explicit learning of supraliminal pairs composed of the same faces combined with written professions semantically incongruous to those presented subliminally (experiment 1), semantically congruous professions (experiment 2), or identical professions (experiment 3). We found that implicit face-profession learning interacted with explicit face-profession learning in all experiments, impairing the explicit retrieval of the associations. Hippocampal activity increased during the subliminal presentation of face-profession pairs versus face-nonword pairs and correlated with the later impairment of explicit retrieval. These findings suggest that implicit semantic associative learning engages the hippocampus and influences explicit memory

    Calmodulin-binding transcription activator 1 (CAMTA1) alleles predispose human episodic memory performance

    No full text
    Little is known about the genes and proteins involved in the process of human memory. To identify genetic factors related to human episodic memory performance, we conducted an ultra-high-density genome-wide screen at < 500 000 single nucleotide polymorphisms (SNPs) in a sample of normal young adults stratified for performance on an episodic recall memory test. Analysis of this data identified SNPs within the calmodulin-binding transcription activator 1 (CAMTA1) gene that were significantly associated with memory performance. A follow up study, focused on the CAMTA1 locus in an independent cohort consisting of cognitively normal young adults, singled out SNP rs4908449 with a P-value of 0.0002 as the most significant associated SNP in the region. These validated genetic findings were further supported by the identification of CAMTA1 transcript enrichment in memory-related human brain regions and through a functional magnetic resonance imaging experiment on individuals matched for memory performance that identified CAMTA1 allele-specific upregulation of medial temporal lobe brain activity in those individuals harboring the 'at-risk' allele for poorer memory performance. The CAMTA1 locus encodes a purported transcription factor that interfaces with the calcium-calmodulin system of the cell to alter gene expression patterns. Our validated genomic and functional biological findings described herein suggest a role for CAMTA1 in human episodic memory
    corecore