440 research outputs found
Nano-modulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation
We present a new method for generation of relativistic electron beams with
current modulation on the nanometer scale and below. The current modulation is
produced by diffracting relativistic electrons in single crystal Si,
accelerating the diffracted beam and imaging the crystal structure, then
transferring the image into the temporal dimension via emittance exchange. The
modulation period can be tuned by adjusting electron optics after diffraction.
This tunable longitudinal modulation can have a period as short as a few
angstroms, enabling production of coherent hard x-rays from a source based on
inverse Compton scattering with total accelerator length of approximately ten
meters. Electron beam simulations from cathode emission through diffraction,
acceleration and image formation with variable magnification are presented
along with estimates of the coherent x-ray output properties
Nested Kirkpatrick–Baez (Montel) optics for hard X-rays
A comprehensive description and ray-tracing simulations are presented for symmetric nested Kirkpatrick-Baez (KB) mirrors, commonly used at synchrotrons and in commercial X-ray sources. This paper introduces an analytical procedure for determining the proper orientation between the two surfaces composing the nested KB optics. This procedure has been used to design and simulate collimating optics for a hard-X-ray inverse Compton scattering source. The resulting optical device is composed of two 12 cm-long parabolic surfaces coated with a laterally graded multilayer and is capable of collimating a 12 keV beam with a divergence of 5 mrad (FWHM) by a factor of ~250. A description of the ray-tracing software that was developed to simulate the graded multilayer mirrors is included
Axisymmetric Grazing-Incidence Focusing Optics for Small-Angle Neutron Scattering
We propose and design novel axisymmetric focusing mirrors, known as Wolter
optics, for small-angle neutron scattering instruments. Ray-tracing simulations
show that using the mirrors can result in more than an order-of-magnitude
increase in the neutron flux reaching detectors, while decreasing the minimum
wave vector transfer. Such mirrors are made of Ni using a mature technology.
They can be coated with neutron supermirror multilayers, and multiple mirrors
can be nested to improve their flux-collection ability. Thus, these mirrors
offer simple and flexible means of significantly improving existing and future
SANS instruments. In addition, short SANS instruments might become possible,
especially at compact neutron sources, when high-resolution detectors are
combined with Wolter optics
Neutron Scattering Study of Crystal Field Energy Levels and Field Dependence of the Magnetic Order in Superconducting HoNi2B2C
Elastic and inelastic neutron scattering measurements have been carried out
to investigate the magnetic properties of superconducting (Tc~8K) HoNi2B2C. The
inelastic measurements reveal that the lowest two crystal field transitions out
of the ground state occurat 11.28(3) and 16.00(2) meV, while the transition of
4.70(9) meV between these two levels is observed at elevated temperatures. The
temperature dependence of the intensities of these transitions is consistent
with both the ground state and these higher levels being magnetic doublets. The
system becomes magnetically long range ordered below 8K, and since this
ordering energy kTN ~ 0.69meV << 11.28meV the magnetic properties in the
ordered phase are dominated by the ground-state spin dynamics only. The low
temperature structure, which coexists with superconductivity, consists of
ferromagnetic sheets of Ho{3+ moments in the a-b plane, with the sheets coupled
antiferromagnetically along the c-axis. The magnetic state that initially forms
on cooling, however, is dominated by an incommensurate spiral antiferromagnetic
state along the c-axis, with wave vector qc ~0.054 A-1, in which these
ferromagnetic sheets are canted from their low temperature antiparallel
configuration by ~17 deg. The intensity for this spiral state reaches a maximum
near the reentrant superconducting transition at ~5K; the spiral state then
collapses at lower temperature in favor of the commensurate antiferromagnetic
state. We have investigated the field dependence of the magnetic order at and
above this reentrant superconducting transition. Initially the field rotates
the powder particles to align the a-b plane along the field direction,
demonstrating that the moments strongly prefer to lie within this plane due to
the crystal field anisotropy. Upon subsequently increasing the field atComment: RevTex, 7 pages, 11 figures (available upon request); Physica
X-ray Scattering Study of the spin-Peierls transition and soft phonon behavior in TiOCl
We have studied the S=1/2 quasi-one-dimensional antiferromagnet TiOCl using
single crystal x-ray diffraction and inelastic x-ray scattering techniques. The
Ti ions form staggered spin chains which dimerize below Tc1 = 66 K and have an
incommensurate lattice distortion between Tc1 and Tc2 = 92 K. Based on our
measurements of the intensities, wave vectors, and harmonics of the
incommensurate superlattice peaks, we construct a model for the incommensurate
modulation. The results are in good agreement with a soliton lattice model,
though some quantitative discrepancies exist near Tc2. The behavior of the
phonons has been studied using inelastic x-ray scattering with ~2 meV energy
resolution. For the first time, a zone boundary phonon which softens at the
spin-Peierls temperature Tsp has been observed. Our results show reasonably
good quantitative agreement with the Cross-Fisher theory for the phonon
dynamics at wave vectors near the zone boundary and temperatures near Tsp.
However, not all aspects of the data can be described, such as the strong
overdamping of the soft mode above Tsp. Overall, our results show that TiOCl is
a good realization of a spin-Peierls system, where the phonon softening allows
us to identify the transition temperature as Tsp=Tc2=92 KComment: 14 pages, 14 figure
Structural phase transition in IrTe: A combined study of optical spectroscopy and band structure calculations
IrPtTe is an interesting system showing competing phenomenon
between structural instability and superconductivity. Due to the large atomic
numbers of Ir and Te, the spin-orbital coupling is expected to be strong in the
system which may lead to nonconventional superconductivity. We grew single
crystal samples of this system and investigated their electronic properties. In
particular, we performed optical spectroscopic measurements, in combination
with density function calculations, on the undoped compound IrTe in an
effort to elucidate the origin of the structural phase transition at 280 K. The
measurement revealed a dramatic reconstruction of band structure and a
significant reduction of conducting carriers below the phase transition. We
elaborate that the transition is not driven by the density wave type
instability but caused by the crystal field effect which further
splits/separates the energy levels of Te (p, p) and Te p bands.Comment: 16 pages, 5 figure
Orientational order in xenon fluid monolayers on single crystals of exfoliated graphite
The melting transition of Xe monolayers adsorbed on a single-crystal exfoliated graphite substrate has been studied by high-resolution synchrotron x-ray scattering. At temperatures slightly above the melting transition the fluid phase has a high degree of orientational order. The results are discussed in the context of current theories of two-dimensional melting including the effects of the substrate
S=1/2 chains and spin-Peierls transition in TiOCl
We study TiOCl as an example of an S=1/2 layered Mott insulator. From our
analysis of new susceptibility data, combined with LDA and LDA+U band structure
calculations, we conclude that orbital ordering produces quasi-one-dimensional
spin chains and that TiOCl is a new example of Heisenberg-chains which undergo
a spin-Peierls transition. The energy scale is an order of magnitude larger
than that of previously known examples. The effects of non-magnetic Sc
impurities are explained using a model of broken finite chains.Comment: 5 pages, 5 figures (color); details on crystal growth added; to be
published in Phys. Rev.
Superconductivity and single crystal growth of Ni0:05TaS2
Superconductivity was discovered in a Ni0:05TaS2 single crystal. A Ni0:05TaS2
single crystal was successfully grown via the NaCl/KCl flux method. The
obtained lattice constant c of Ni0:05TaS2 is 1.1999 nm, which is significantly
smaller than that of 2H-TaS2 (1.208 nm). Electrical resistivity and
magnetization measurements reveal that the superconductivity transition
temperature of Ni0:05TaS2 is enhanced from 0.8 K (2H-TaS2) to 3.9 K. The
charge-density-wave transition of the matrix compound 2H-TaS2 is suppressed in
Ni0:05TaS2. The success of Ni0:05TaS2 single crystal growth via a NaCl/KCl flux
demonstrates that NaCl/KCl flux method will be a feasible method for single
crystal growth of the layered transition metal dichalcogenides.Comment: 13pages, 6 figures, Published in SS
- …
