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A comprehensive description and ray-tracing simulations are presented for

symmetric nested Kirkpatrick–Baez (KB) mirrors, commonly used at synchro-

trons and in commercial X-ray sources. This paper introduces an analytical

procedure for determining the proper orientation between the two surfaces

composing the nested KB optics. This procedure has been used to design and

simulate collimating optics for a hard-X-ray inverse Compton scattering source.

The resulting optical device is composed of two 12 cm-long parabolic surfaces

coated with a laterally graded multilayer and is capable of collimating a 12 keV

beam with a divergence of 5 mrad (FWHM) by a factor of �250. A description

of the ray-tracing software that was developed to simulate the graded multilayer

mirrors is included.

1. Introduction
Many important techniques for probing the structure and

dynamics of matter (such as protein crystallography and X-ray

microscopy) require extremely bright hard X-ray sources

equipped with sophisticated beam-shaping optics, such as

grazing-incidence focusing mirrors. In particular, Kirkpatrick–

Baez (KB) optics consist of two perpendicular reflecting

mirrors, bent elliptically or parabolically in one direction and

positioned sequentially with respect to each other. In the case

of nested KB mirrors, also known as L-shaped or Montel

mirrors, the two surfaces are mounted adjacent to each other.

Compared to the sequential counterpart, nested KB mirrors

are more compact and are capable of higher demagnification/

magnification. In addition, the two mirrors making the

sequential KB optics have to be placed at different distances

from the foci, meaning that their shape must be different and

each one produces an image of the source with different

magnification. In contrast, nested mirrors are identical. As a

result, their potential applications include both laboratory and

synchrotron X-ray sources.

While several papers have described the construction and

testing (Honnicke et al., 2011) of nested KB optics, details

related to the alignment of the individual surfaces appear to

be absent from the literature. As we show below, for the

optimal alignment, the surfaces must deviate from the 90�

orientation relative to each other. This is a result of the

noncommuting nature of individual reflections from each of

the surfaces composing the optics.

We derive analytic expressions to determine the correct

orientation between the surfaces and confirm these expres-

sions by ray-tracing simulations. Using these expressions, we

design a Montel collimator for use with a recently proposed

novel inverse Compton scattering (ICS) source (Graves et al.,

2014). ICS sources may provide a laboratory-size hard X-ray

source with comparable brightness to the third-generation

synchrotron facilities, but with an angular divergence larger

than that of synchrotrons, �5 mrad at �12 keV, and with

much smaller source size, �3 mm. Many X-ray techniques

require a well collimated beam to go through perfect-crystal Si

or Ge monochromators, which accept a beam divergence

smaller than 100 mrad.
Therefore, we designed a set of parabolic nested KBmirrors

able to collimate a beam from an ICS source, while being only

12 cm in length. For comparison, a sequential KB configura-

tion providing a similar throughput would be approximately

31 cm in length (12 cm for the first mirror and 19 cm for the

second). Other potential applications of nested KB mirrors

include inelastic X-ray scattering and X-ray nanoprobes. Both

techniques require focusing mirrors with performance char-

acteristics similar to those required for the collimator

described here. In the case of nanoprobes, elliptical mirrors

are necessary (Liu et al., 2011). In addition, neutron applica-

tions of elliptical nested KB mirrors have been recently

described (Ice et al., 2009; Weichselbaumer et al., 2014). We

believe that the methods developed in this paper could be

extended to nested KB mirrors suitable for these applications.

2. General configuration

Fig. 1 illustrates the beamline configuration used to analyze

the collimation setup. The source itself is located at the origin

of the coordinate system and modeled as emitting a mono-

chromatic, spatially uniform, angularly Gaussian X-ray beam

with an energy of 12 keV, a radius of 2.5 mm and an FWHM

divergence of 5 mrad. These parameters approximate the

expected output from an inverse Compton Source (Graves et

al., 2009). A detector is located 10 m from the end of the optics

to inspect the size and divergence of the output beam.
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The collimating mirrors are two parabolic surfaces whose

geometry is given by equations (1) and (2) below. Owing to

constraints of the inverse Compton source, the leading edges

of the mirrors are placed at 0.2 m from the source.

2.1. Parabolic surface geometry

In standard Cartesian coordinates, the geometry of para-

bolic nested KB mirror surfaces (Sp1 and Sp2) is given by

Sp1ðx; zÞ ¼ x �2½pðz þ pÞ�1=2 z
� �

; ð1Þ

Sp2ðy; zÞ ¼ �2½pðz þ pÞ�1=2 y z
� �

; ð2Þ
where p is the parabolic parameter and x; y; z span the

dimensions of the optics. The focus of the mirrors coincides

with the X-ray source at the origin of the coordinate system.

It is convenient to define the parabolic parameter, p, in

equations (1) and (2) in terms of the y and z coordinates of the

edge closest to the focus on Sp1. Denoting these values by ys

and zs, respectively, we find that

p ¼ �zs þ ðz2s þ y2
s Þ1=2

2
: ð3Þ

The vectors normal to the surfaces in equations (1) and (2) are

given by

np1ðzÞ ¼ 0
z þ p

z þ 2p

� �1=2
p

z þ 2p

� �1=2� �
; ð4Þ

np2ðzÞ ¼ z þ p

z þ 2p

� �1=2

0
p

z þ 2p

� �1=2� �
: ð5Þ

3. Perpendicular nested KB mirrors form two divergent
beams

Analysis of the mirrors described by equations (1) and (2)

shows that such optics cannot collimate the beam properly.

Instead, the rays that traverse the optics are separated into

two groups with different average divergences. This separation

results in a notable angular gap in the output beam, as visible

in the simulation results shown in Fig. 2.

The formation of the gap is understood with the help of

geometrical optics. A divergent set of rays originating from the

focal point is intercepted by the mirrors. One half of the rays

will reflect from the mirror Sp1, followed by Sp2, while the other

half will interact first with Sp2 and then with Sp1 (hereafter, the

subscript p will be omitted for brevity). The first reflection

would change the direction of a ray in one plane (see Fig. 3).

Therefore, this ray will reflect from the second surface as if it

were coming from a virtual source, which is different from the

focal point at the origin (point P2 in Fig. 3). Thus, half of the

beam is perfectly collimated along the x axis and divergent

along the y axis, while the other half is perfectly collimated

along the y axis and divergent along the x axis, resulting in an

angular gap.

This effect is described mathematically as follows. Consider

a particle which will hit very close to the intersection between
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Figure 2
Beam profile obtained with the detector located 10 m from the end of
parabolic nested KB optics, with ys ¼ 1 cm, zs ¼ 20 cm and l ¼ 12 cm.
The source is a point, with Gaussian divergence (FWHM) of 15 mrad.
The beam completely covers the optics to better illustrate the output
profile. Dashed lines indicate the analytically calculated gap profile, which
agrees perfectly with simulation results.

Figure 3
Illustration of the trajectory for a particle that first hits S2 and then S1 in
the yz plane. The particle begins at the point labeled Source with an angle
with the z axis of �1 and travels along the thick solid segment until point
P1. At P1 the particle hits S2 and is collimated along the x axis, but
acquires an angle with the z axis of �2 in the yz plane. As a result of this
change in direction in the yz plane, the particle appears to the second
surface, S1, as if it originated from P2, not Source, resulting in an off-axis
trajectory. From P1, the particle follows the thin solid line which is
deflected from the z axis by the angle �1 � �2. This angle determines the
gap in Fig. 2. A similar effect happens in the xz plane for particles that
first hit S1 and then S2. (The drawing is not to scale for clarity; the angles
and the distance between Source and P2 are exaggerated.)

Figure 1
Illustration of the beamline layout used to analyze a collimator
application of parabolic nested KB optics.
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the two surfaces. Its direction is described by the unit vector of

its velocity,

v̂v ¼ vy vy vz

� 	
: ð6Þ

Suppose that the particle is bound to hit one of the two

surfaces first. Had the particle hit the surface S1, it would have

had an angle with the z axis of

�1 ¼ arctan vy=vz

� 	 ð7Þ
and subsequently have been collimated perfectly in the y

direction by the parabolic profile S1. However, had the particle

interacted with S2 prior to reflecting from S1, its direction

would have become

v̂v ¼ 0 vy ðv2
y þ v2zÞ1=2

h i
: ð8Þ

Therefore, this particle would hit S1 with an angle with the z

axis of

�2 ¼ arctan
vy

ðv2
y þ v2

zÞ1=2
" #

: ð9Þ

The resulting divergence of the particle from the z axis is

�1 � �2 ¼ arctan
vy

vz

� �
� arctan

vy

ðv2y þ v2
zÞ1=2

" #
: ð10Þ

Fig. 3 illustrates the two divergent trajectories. We can express

the above equation as a function of the z-axis position of the

intersection point where the particle hits the mirror, by using

the relation that the position of the particle is related to the

velocity by a scalar constant t, x ¼ vt. The expression becomes

�1 � �2 ¼ arctan
yh

zh

� �
� arctan

yh

ðy2h þ z2
hÞ1=2

" #
: ð11Þ

Here yh is the y-axis position of the intersection point where

the particle hits, given by

yhðzhÞ ¼ �2 pðzh þ pÞ
 �1=2
; ð12Þ

and zh is the z-axis position where the particle hits the inter-

section, whose possible values span the length of the optics:

zs < zh < zs þ l: ð13Þ
Finally, we compute the edge of the gap on a detector at a

distance d from the end of the optics, ze, shown as dashed lines

in Fig. 2. For particles that hit the S1 surface first, the gap edge

on the detector is given by

½ydðzhÞ; yhðzhÞ�; ð14Þ
whereas for particles that hit the S2 surface first, the edge is

½yhðzhÞ; ydðzhÞ�: ð15Þ
Since the distance between the detector and the point where

the ray hits the mirror is d þ ze � zh, then ydðzhÞ is given by

ydðzhÞ ¼ yh þ ðd þ ze � zhÞ tan �1 � �2ð Þ;

¼ yh þ ðd þ ze � zhÞ tan arctan
yh
zh

� ��

� arctan
yh

ðy2h þ z2
hÞ1=2

" #)
: ð16Þ

Fig. 2 illustrates the perfect consistency between ray tracing

and analytical calculations in determining the gap profile.

4. Determining the correct alignment of nested mirrors

4.1. Optimal alignment condition

A simple argument derives the necessary condition for the

collimation of light incident on the intersection between two

mirror surfaces.

Let the direction of an on-axis particle which will hit a point

along the intersection be given by v̂v. Assume that the particle

will hit one of the surfaces first and denote the vector normal

to the surface at the point of contact as n1. Following the

reflection from this first surface, the direction of the particle

becomes

v̂v1 ¼ v̂v� 2n1 � v̂v: ð17Þ
Now the particle hits the second surface. Denote the vector

normal to the second surface at the point of contact as n2.

Following this second reflection, the direction of the particle

becomes

v̂v12 ¼ v̂v1 � 2n2 � v̂v1: ð18Þ
Substituting the expression for v1 we find

v̂v12 ¼ v̂v� 2ðn1 � v̂vÞn1 � 2 n2 � v̂v� 2ðn1 � v̂vÞn1

 �� �

n2: ð19Þ
Now consider a counterpart particle which hits the two

surfaces in the opposite order. Its final direction would be

v̂v21 ¼ v̂v� 2ðn2 � v̂vÞn2 � 2 n1 � v̂v� 2ðn2 � v̂vÞn2

 �� �

n1: ð20Þ
Since the order of reflections should not affect the ultimate

direction of propagation, the condition for alignment is

v̂v12 ¼ v̂v21: ð21Þ
Substituting the expressions for v̂v12 and v̂v21, we obtain

ðn1 � v̂vÞðn2 � n1Þn2 ¼ ðn2 � v̂vÞðn1 � n2Þn1: ð22Þ
This equation is satisfied in three different scenarios. The first

is if n1 ¼ n2. This is the case in a paraboloid or ellipsoid single-

reflection geometry. The second is if both n1 and n2 are

orthogonal to v. This is the trivial case in which the particle is

already collimated and no reflections occur from the surface.

Finally, the above condition is satisfied provided that n1 is

orthogonal to n2:

n1 � n2 ¼ 0: ð23Þ
This is the condition of interest for the nested KB mirror

geometry. For elliptical or parabolic mirrors this condition

cannot be perfectly satisfied at every point simultaneously

along the intersection between the two mirrors. However, it is
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possible to satisfy the condition exactly at one point along the

intersection and to a good approximation at a second point,

improving overall the collimating or focusing properties of the

optics.

4.2. Rotations for optimal alignment

We choose to enforce equation (23) at the point along the

optics where the maximum intensity of light is reflected. We

then rotate each individual surface around the normals at this

point until the normals at another point along the geometry

are approximately orthogonal, such as the end of the mirrors.

Let T define a matrix of symmetry for the geometry such

that, for any point on the first mirror S1, the equivalent point

on the second mirror S2 is given by

S2 ¼ TS1: ð24Þ
From equations (1) and (2),

T ¼
0 1 0

1 0 0

0 0 1

0
@

1
A: ð25Þ

LetR define the matrix for a rotation by an angle � around a
unit vector ûu as given by the Rodrigues’ formula,

Rð�; ûuÞ ¼ I cos � þ JðûuÞ sin � þ ð1� cos �Þ½JðûuÞ�2; ð26Þ
where JðûuÞ is defined by

JðûuÞ �
0 �uz uy

uz 0 �ux

�uy ux 0

0
@

1
A: ð27Þ

Note that for any vector x,

JðûuÞx ¼ ûu	 x: ð28Þ
Let nc1 ¼ np1ðzcÞ denote the vector normal to a surface at

the point along the intersection zc where the most intensity

will be incident. First, this vector must be orientated perpen-

dicular to its counterpart on the other surface (Tnc1) by

rotating around a vector ĝg, which is orthogonal to both.

Therefore, the vector to rotate the normal about is given by

ĝg ¼ nc1 	 Tnc1
jnc1 	 Tnc1j

: ð29Þ

Since the angle between nc1 and Tnc1 is

sin � ¼ jnc1 	 Tnc1j; ð30Þ
nc1 must be rotated about ĝg by

’1 ¼ � 1

2

�

2
� arcsin jnc1 	 Tnc1jð Þ

h i
: ð31Þ

Correspondingly, the rotation matrix is

R1 ¼ R ’1; ĝgð Þ: ð32Þ
As a result the newly rotated normal at the point of maximum

intensity is R1nc1.

Next we orient the normals at another point along the

optics (such as the end), by rotating around R1nc1. Let

k ¼ R1ne1 denote the normal (following the first rotation) at

this second point. We determine the rotation angle by solving

for ’2 in the following equation:

Rð’2;R1nc1Þk

 � � TRð’2;R1nc1Þk


 � ¼ 0: ð33Þ
Using the small-angle expansions for sine and cosine, a

reasonable analytical approximation for the value of ’2 can be

found. This is given by (see Appendix A for the derivation)

’2 ¼
�ðk �mÞ 
 ½ðk �mÞ2 � ðm � TmÞðk � TkÞ�1=2

m � Tm ; ð34Þ

where

m ¼ TðR1nc1 	 kÞ ð35Þ
and the smaller value in magnitude for ’2 is the desired value.

The second rotation is then given by

R2 ¼ Rð’2;R1nc1Þ: ð36Þ
Finally, the complete rotation for this surface is

RT1 ¼ R2R1: ð37Þ
We can then find the rotation for the second surface with

RT2 ¼ TR2R1T: ð38Þ
The rotation-matrix formalism is used for simulations of the

geometry by the ray-tracing software.

4.3. Orientation of the detector

As a result of these rotations, the direction of propagation

of the output beam and the location of the focal point change

slightly. Since our simulations determined that the change in

the location is small, we can determine the new output

propagation direction by noting that, under the orthogonal

condition (nc1 � nc2 ¼ 0) and for a ray traveling on the

symmetric plane (v̂v ¼ Tv̂v), equation (19) can be written as

v̂v12 ¼ v̂v� 2 2�1=2ðn1 þ n2Þ � v̂v

 �

2�1=2ðn1 þ n2Þ: ð39Þ
Therefore, letting v be a ray traveling from the source to the

center of the optics, and n1 and n2 be the rotated normals of

the mirrors taken at the point of maximum intensity, it is

straightforward to determine the direction of propagation of

the output beam. This propagation direction can then be used

to correctly situate the detector relative to the optics.

4.4. Determining the shape of the mirror substrate blocks

Fig. 4 shows the geometry of the substrates that form the

rotated nested KB mirrors. The substrates are cut to ensure

optimal alignment as described above. The determined surface

orientation can be achieved by cutting the sides and bottom of

the substrate by the appropriate angles �s and �b which are

determined from the rotation matrix using the following

procedure. Let p be the unit eigenvector of the symmetric

matrix T, identified by

p ¼ �Tp ¼ �1 1 0
� 	

: ð40Þ
The angles made by the sides �s and bottom �b of the blocks

are then given by
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�s ¼ arctan
b̂b � R�1

T1p

ĥh � R�1
T1p

 !
; �b ¼ arctan

b̂b � R�1
T1p

l̂l � R�1
T1p

 !
; ð41Þ

where b̂b, ĥh and l̂l are the unit vectors along the base, height and

length of the block respectively, in their unrotated state and

R�1
T1 is the inverse of the alignment matrix for the surface.

5. Simulation of parabolic collimation optics for inverse
Compton sources

5.1. Simulating a laterally graded multilayer mirror coating

Throughout our simulations, the parabolic surfaces

composing the optics were simulated as being coated with a

laterally graded multilayer formed by 100 bilayers of W/Si,

where the ratio of the thickness of the silicon layer to total

bilayer thickness is

� ¼ 0:8: ð42Þ
A suitable approximation to the ideal profile of the bilayer

thickness (d) can be derived using Bragg’s law corrected for

refraction, given by

dðzÞ ¼ �

2fsin2 �gðzÞ

 �� 2�g1=2 : ð43Þ

Here � is the average expected wavelength, �gðzÞ is the

average expected incident grazing angle and � is the mean

decrement in reflectivity, given by

� ¼ ð1� �Þ<f1� n1g þ �<f1� n2g; ð44Þ
where n1 and n2 are the complex refractive indexes for the top

and bottom bilayer materials, respectively, and <f. . .g denotes
the real part. The complex refractive index of a material can

be calculated from the scattering length using (Als-Nielsen &

McMorrow, 2011)

ni ¼ 1� �2<fbig
2�

þ i
�=fbig
4�

; ð45Þ

where � is the average expected wavelength and bi is the

scattering length density. For the W and Si materials used

through our simulations, these values are given by, at

� ¼ 1:54051 Å,

b1 ¼ 4:678½Å�3�r0 þ i33:235	 10�6½Å�2�; ð46Þ

b2 ¼ 0:699½Å�3�r0 þ i1:399	 10�6½Å�2�; ð47Þ
where b1 is the complex index for tungsten (W), b2 is the

complex index for silicon (Si) and r0 is the classical Thompson

scattering length.

Using equation (1) for Sp1 it is straightforward to determine

an expression for the expected incident grazing angle at a

particular point along the surface �gðzÞ for the parabola

geometry:

�gðzÞ ¼
1

2
arctan

�2½pðz þ pÞ�1=2
z

� 
: ð48Þ

Within our simulations, the reflectivity of the multilayers

was calculated using the Parratt formula (Als-Nielsen &

McMorrow, 2011). The surfaces were simulated without any

roughness or figure error. Fig. 5 illustrates the variation in the

multilayer thickness across the surface of the mirror.

5.2. Simulation results

Both ray-tracing simulation and analytical considerations

show that the best performing geometry results from mini-

mizing ys and zs and maximizing the length of the optics l.

Minimizing ys and zs is subject to the physical constraints of

the source and the maximum grazing angle of the material

(�g ’ 24 mrad for W/Si), while maximizing the length of the

optics l is subject to manufacturing limitations. For our setup,

zs ¼ 0:2m; ys ¼ �zs sinð2�gmaxÞ ¼ �0:0096m; ð49Þ
corresponding to a parabolic parameter of

p ¼ 1:151	 10�4 m: ð50Þ
Using the source parameters described in x2, we proceeded

to scan the throughput of the optics as a function of length.

Fig. 6 illustrates the mirror throughput at the detector as a

function of the length of the mirror.
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Figure 5
Plot of the variation of the bilayer thickness (d) across the surfaces of the
mirror. The source is located in the direction of the upper right corner.
The minimum bilayer thickness is 21.817 Å, while the maximum thickness
is 27.804 Å.

Figure 4
Illustration depicting the exploded view of the optics (left) along with
the angles �b and �s for a single mirror block (right). The local coordinate
unit vectors b̂b, ĥh and L̂L are likewise shown.
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Taking practical manufacturing limits into account, we

decided on a design with a mirror length of l ¼ 0:12 m,

corresponding to a throughput of 0.478.

Fig. 7 compares the output of the beam using this mirror

design for the various levels of corrective rotations of the

optics. The profile of the beam using both the first and second

rotations (Fig. 7c) corresponds to a Gaussian-like distribution

with a spacial FWHM of �0.7 mm and a half-divergence of

�0.01 mrad.

6. Discussion

The propagation of two reflected beams and the gap between

them shown in Fig. 1 are specific to Montel optics. Two

divergent pathways through the optics appear because a ray

could be reflected from either the horizontal or the vertical

mirror first. To correct this divergence, the mirrors must be

tilted and rotated such that the two rays propagate in the same

direction after the second reflection. Elliptical Montel optics,

such as for nanoprobe applications, were not considered here

in detail, but the same condition v12 ¼ v21 should be satisfied

for the beam to form a single focal point. The mirror rotation

and detector position should be determined by a similar

method.

Standard KB mirrors, which consist of sequential horizontal

and vertical mirrors, do not produce two divergent rays, since

all the rays follow the same order of reflections.

For practical purposes, ray-tracing simulations must take

into account imperfections of the optics, including figure

errors, roughness and misalignment between the mirrors.

These effects will have to be studied separately, but they

should have a similar effect on the performance of Montel

optics as they do on standard KB mirrors.

The technological challenge specific to Montel geometry is

the precision cutting of mirrors near the corner, where the

center of the beam is located. This is different from KB

mirrors, where the center of the beam strikes away from the

mirror’s edges. However, we expect that Montel optics could

be made to the same angular resolution as KB mirrors,

allowing the use of Montel mirrors for applications such as

crystallography, SAXS, and nanoprobe at both synchrotron

beamlines and compact X-ray sources, as well as neutron

applications.

In summary, we have developed an analytical description of

nested KB mirrors, including their shapes and mutual orien-

tation. We found that the correct orientation of mirrors with

respect to each other is not perpendicular, as was assumed

previously. In fact, we showed analytically and by ray-tracing

simulations that, after reflections from two perpendicular

nested mirrors, the beam would split into two nonparallel

beams downstream from the optics. This effect is due to the

difference in optical paths of particles that are reflected

initially from different mirrors. As an example, we considered

parabolic mirrors and derived the mutual orientation angles of

the mirrors for producing an almost parallel beam after the

optics. The application of the nested KB optics as a collimator

for a compact X-ray source (Graves et al., 2014) is discussed in

detail.

APPENDIX A
Derivation of analytical approximation of the second
rotation angle

An analytical approximation for the second rotation angle ’2

can be derived in the limit where ’2 � 1. Using equation (26),

along with the small-angle approximations

sin ’2 ffi ’2; cos ’2 ffi 1; ð51Þ
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Figure 7
Comparison of corrections at 10 m from the end of the optics for a 0.12 m-
long design using a Gaussian source with an energy of 12 keV, a radius of
2.5 mm and an FWHM divergence of 5 mrad. (a) No rotation, (b) only
first rotation, and (c) first and second rotation. (d) is a plot of the x-axis
and y-axis divergence using the first and second rotation. The throughput
of the optics for all of the above plots is 0.478.

Figure 6
Intensity at the detector as a function of mirror length for designs with
ys ¼ �0:0096 m and zs ¼ 0:2 m.
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we note that equation (36) reduces to

R2 ¼ Rð’2;R1nc1Þ ffi Iþ ’2JðR1nc1Þ: ð52Þ
Hence,

R2k ffi kþ ’2JðR1nc1Þk ffi kþ ’2ðR1nc1Þ 	 k; ð53Þ
where we have used the property that

JðûuÞx ¼ ûu	 x: ð54Þ
Using the above result for R2 with equation (34) we find

0 ¼ Rð’2;R1nc1Þk

 � � TRð’2;R1nc1Þk


 �
¼ Iþ ’2½ðR1nc1Þ 	 k�� � � T Iþ ’2½ðR1nc1Þ 	 k�� �� 	
¼ k � Tkþ 2’2k � T ðR1nc1Þ 	 k


 �� �
þ ’2

2 ðR1nc1Þ 	 k

 � � T ðR1nc1Þ 	 k


 �� �
: ð55Þ

Letting m ¼ T½ðR1nc1Þ 	 k�, this simplifies to

0 ¼ k � Tkþ 2k �m’2 þm � Tm’2
2; ð56Þ

which is quadratic in ’2. Hence,

’2 ¼
�ðk �mÞ 
 ½ðk �mÞ2 � ðm � TmÞðk � TkÞ�1=2

m � Tm ; ð57Þ

agreeing with equation (34).

APPENDIX B
Simulation software

To allow for the simulation of graded multilayer materials and

provide a more modular ray tracer, a Monte Carlo simulation

package was written. While the main simulation code was

implemented in C++ for improved performance, a Python

wrapper enables simulations to be specified from the more

user-friendly Python interpreter.

Internally, the software is a general purpose particle tracer

consisting of classes representing sources, objects, materials

and scenes. To specify a beamline, instances of sources and

objects are added to a scene class. During the simulation, the

scene calls the source to generate a series of particles. The

scene then determines which object is first along the trajectory

of a particle by asking for the interaction times from each

object. The object with the smallest interaction time is asked

to modify the state of that particle to simulate the ensuing

event. As a result of this general particle collision routine, the

code is able to accurately simulate nested components like the

Montel mirror optics in our study.

For greater flexibility, materials are handled independently

from the definition of objects. Many objects (such as mirrors)

require a material class instance as an initialization parameter.

When the scene class asks these objects to handle a particle,

they simply move the particle to the point of interaction and

then forward the request to the specified material along with

the coordinates of the interaction in the component coordi-

nate system. The material class then performs any additional

modifications to the particle’s state that result from the

interaction. This mechanism was devised not only to reduce

the amount of code required to define a new material, but also

to allow for a single definition of a material to be used with

different objects. Graded multilayer coatings can be easily

implemented by simply defining a material whose reflectivity

varies as a function of the location of the interaction in the

component coordinate system.

The development of the ray-tracing software was partially

supported by the US Department of Energy, Office of Basic

Energy Sciences, Division of Materials Sciences and Engi-

neering, under award DE-FG02-09ER46556.
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Böni, P. (2014). arXiv:1406.1313.

research papers

564 Giacomo Resta et al. � Nested KB optics for hard X-rays J. Appl. Cryst. (2015). 48, 558–564

electronic reprint


