13 research outputs found

    Tratamento medicamentoso dos tumores hipofisários. parte II: adenomas secretores de ACTH, TSH e adenomas clinicamente não-funcionantes

    Full text link

    A comparison of radiative transfer models for simulating Atmospheric Infrared Sounder (AIRS) radiances

    No full text
    A comparison of radiative transfer models for simulating radiances from the Atmospheric Infrared Sounder (AIRS), has been undertaken. Results from 14 line-by-line and fast parameterized infrared models were submitted. Several aspects of the models were compared. First, the forward model calculations for all 2378 AIRS channels for 52 diverse atmospheric profiles and one tropical Pacific profile coincident with AIRS data were performed for three local zenith viewing angles: nadir, 45, and 60 degrees. Second, for a subset of the models and only 20 AIRS channels the transmittances from each layer to space were provided. Finally, for some models the Jacobians with respect to temperature, water vapor, and ozone were also computed. For the forward model calculations, most models agree to within 0.02 K when compared to a reference line-by-line model averaged over a subset of profiles, with the exception of a few spectral regions. When compared with AIRS observations, however, the mean differences increase to 0.2 K, and for a few models even greater differences are seen. The transmittance differences highlighted regions of the spectrum where the spectroscopy of the models differs, particularly in the carbon dioxide absorption bands at 667 cm−1 and 2386 cm−1. For the Jacobians all models have some profiles/channels that do not fit the reference well, and the main problems are documented here. The model differences only increase slightly for off-nadir viewing angles for both forward and Jacobian calculations

    Comparison of radiative transfer models for AIRS

    No full text
    Many of the results of this study are presented in the paper included in the ITSC-14 proceedings by Saunders et. al. (2005) and a paper by Saunders et. al. (2006) about to be published. This paper therefore only summarizes the final conclusions of the study

    Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels

    No full text
    International audienceThe goals of this study are the evaluation of current fast radiative transfer models (RTMs) and line-by-line (LBL) models. The intercomparison focuses on the modeling of 11 representative sounding channels routinely used at numerical weather prediction centers: 7 HIRS (High-resolution Infrared Sounder) and 4 AMSU (advanced microwave sounding unit) channels. Interest in this topic was evident by the participation of 24 scientists from 16 institutions. An ensemble of 42 diverse atmospheres was used and results compiled for 19 infrared models and 10 microwave models, including several LBL RTMs. For the first time, not only radiances but also Jacobians (of temperature, water vapor, and ozone) were compared to various LBL models for many channels. In the infrared, LBL models typically agree to within 0.05-0.15 K (standard deviation) in terms of top-of-the-atmosphere brightness temperature (BT). Individual differences up to 0.5 K still exist, systematic in some channels, and linked to the type of atmosphere in others. The best fast models emulate LBL BTs to within 0.25 K, but no model achieves this desirable level of success for all channels. The ozone modeling is particularly challenging. In the microwave, fast models generally do quite well against the LBL model to which they were tuned. However, significant differences were noted among LBL models. Extending the intercomparison to the Jacobians proved very useful in detecting subtle or more obvious modeling errors. In addition, total and single gas optical depths were calculated, which provided additional insight on the nature of differences
    corecore