8 research outputs found

    Patterns of fossil distributions within their environmental context from the Middle Triassic in South Canyon, Central Nevada, USA

    Get PDF
    AbstractThe Middle Triassic records the return of diverse marine communities after the severe effects of the end-Permian mass extinction. This diversification leads to the Mesozoic/modern adaptive radiation resulting in substantial changes in marine communities in comparison to their Paleozoic predecessors. This analysis focuses on the faunal abundance, ecological patterns, and environmental interpretation of a Middle Triassic section in Central Nevada. Twelve bulk samples were collected. Visible fossils were identified and tallied from hand samples and thin-sections were used to aid in environmental interpretation. Beginning in the Late Anisian, we observed an ammonoid dominated to flat-clam, epifaunal dominated benthic community within a muddy, quiet, inner shelf depositional environment. Through time, epifaunal bivalves dominate within a middle shelf environment followed by an increase in infaunalization and shell-thickness. During this time the presence of oncoids and the reported finding of corals suggest the middle shelf environment gave way to a higher energy patch reef shelf edge environment. Finally, we observe epifaunal brachiopods communities at the top of our section deposited in a middle shelf environment. In sum, we observe the dominance of modern taxa (i.e., bivalves) with Paleozoic ecologies (i.e., epifaunal), followed by the dominance of modern taxa with Modern ecologies (i.e., infaunal, thick shells) and then a return to Paleozoic taxa (i.e., brachiopods) and Paleozoic ecologies within an overall transgressive environment

    Selectivity of mass extinctions: Patterns, processes, and future directions

    Get PDF
    A central question in the study of mass extinction is whether these events simply intensify background extinction processes and patterns versus change the driving mechanisms and associated patterns of selectivity. Over the past two decades, aided by the development of new fossil occurrence databases, selectivity patterns associated with mass extinction have become increasingly well quantified and their differences from background patterns established. In general, differences in geographic range matter less during mass extinction than during background intervals, while differences in respiratory and circulatory anatomy that may correlate with tolerance to rapid change in oxygen availability, temperature, and pH show greater evidence of selectivity during mass extinction. The recent expansion of physiological experiments on living representatives of diverse clades and the development of simple, quantitative theories linking temperature and oxygen availability to the extent of viable habitat in the oceans have enabled the use of Earth system models to link geochemical proxy constraints on environmental change with quantitative predictions of the amount and biogeography of habitat loss. Early indications are that the interaction between physiological traits and environmental change can explain substantial proportions of observed extinction selectivity for at least some mass extinction events. A remaining challenge is quantifying the effects of primary extinction resulting from the limits of physiological tolerance versus secondary extinction resulting from the loss of taxa on which a given species depended ecologically. The calibration of physiology-based models to past extinction events will enhance their value in prediction and mitigation efforts related to the current biodiversity crisis

    Our past creates our present: a brief overview of racism and colonialism in Western paleontology

    Get PDF
    As practitioners of a historical science, paleontologists and geoscientists are well versed in the idea that the ability to understand and to anticipate the future relies upon our collective knowledge of the past. Despite this understanding, the fundamental role that the history of paleontology and the geosciences plays in shaping the structure and culture of our disciplines is seldom recognized and therefore not acted upon sufficiently. Here, we present a brief review of the history of paleontology and geology in Western countries, with a particular focus on North America since the 1800s. Western paleontology and geology are intertwined with systematic practices of exclusion, oppression, and erasure that arose from their direct participation in the extraction of geological and biological resources at the expense of Black, Indigenous, and People of Color (BIPOC). Our collective failure to acknowledge this history hinders our ability to address these issues meaningfully and systemically in present-day educational, academic, and professional settings. By discussing these issues and suggesting some ways forward, we intend to promote a deeper reflection upon our collective history and a broader conversation surrounding racism, colonialism, and exclusion within our scientific communities. Ultimately, it is necessary to listen to members of the communities most impacted by these issues to create actionable steps forward while holding ourselves accountable for the past

    Patterns of fossil distributions within their environmental context from the Middle Triassic in South Canyon, Central Nevada, USA

    No full text
    The Middle Triassic records the return of diverse marine communities after the severe effects of the end-Permian mass extinction. This diversification leads to the Mesozoic/modern adaptive radiation resulting in substantial changes in marine communities in comparison to their Paleozoic predecessors. This analysis focuses on the faunal abundance, ecological patterns, and environmental interpretation of a Middle Triassic section in Central Nevada. Twelve bulk samples were collected. Visible fossils were identified and tallied from hand samples and thin-sections were used to aid in environmental interpretation. Beginning in the Late Anisian, we observed an ammonoid dominated to flat-clam, epifaunal dominated benthic community within a muddy, quiet, inner shelf depositional environment. Through time, epifaunal bivalves dominate within a middle shelf environment followed by an increase in infaunalization and shell-thickness. During this time the presence of oncoids and the reported finding of corals suggest the middle shelf environment gave way to a higher energy patch reef shelf edge environment. Finally, we observe epifaunal brachiopods communities at the top of our section deposited in a middle shelf environment. In sum, we observe the dominance of modern taxa (i.e., bivalves) with Paleozoic ecologies (i.e., epifaunal), followed by the dominance of modern taxa with Modern ecologies (i.e., infaunal, thick shells) and then a return to Paleozoic taxa (i.e., brachiopods) and Paleozoic ecologies within an overall transgressive environment

    Data from: Regional and environmental variation in escalatory ecological trends during the Jurassic: a western Tethys hotspot for escalation?

    No full text
    Understanding the drivers of macroevolutionary trends through the Phanerozoic has been a central question in paleobiology. Increasingly important is understanding the regional and environmental variation of macroevolutionary patterns and how they are reflected at the global scale. Here we test the role of biotic interactions on regional ecological patterns during the Mesozoic marine revolution. We test for escalatory trends in Jurassic marine benthic macroinvertebrate ecosystems using occurrence data from the Paleobiology Database parsed by region and environment. The escalation hypothesis posits that taxonomic groups that could adapt to intense predation and bioturbation proliferated, whereas groups unable to adapt were reduced in diversity and abundance or driven to extinction. We tested this hypothesis in five regions during Jurassic stages and among four depositional environments in Europe. Few escalatory trends were detected, although at least one escalatory trend was observed in every region, with the greatest number and strongest trends observed in Europe. These trends include increases in shallow infauna and cementing epifauna and occurrences of facultatively mobile invertebrates and decreases in pedunculate, free-lying, and sessile epifauna. Within Europe, escalatory trends occur in shallow-water environments but also in deeper-water environments, where they are predicted not to occur. When regional trends are aggregated, trends in Europe drive the global signal. The results of this study suggest that while evidence of escalation is rare globally, it is plausible that escalation drove macroevolutionary patterns in Europe. Furthermore, these results underline the need to dissect global fossil data at the regional scale to understand global macroevolutionary dynamics

    Reduced strength and increased variability of extinction selectivity during mass extinctions

    No full text
    Two of the traits most often observed to correlate with extinction risk in marine animals are geographical range and body size. However, the relative effects of these two traits on extinction risk have not been investigated systematically for either background times or during mass extinctions. To close this knowledge gap, we measure and compare extinction selectivity of geographical range and body size of genera within five classes of benthic marine animals across the Phanerozoic using capture–mark–recapture models. During background intervals, narrow geographical range is strongly associated with greater extinction probability, whereas smaller body size is more weakly associated with greater extinction probability. During mass extinctions, the association between geographical range and extinction probability is reduced in every class and fully eliminated in some, whereas the association between body size and extinction probability varies in strength and direction across classes. While geographical range is universally the stronger predictor of survival during background intervals, variation among classes during mass extinction suggests a fundamental shift in extinction processes during these global catastrophes

    Effect of forest management on tree diversity in temperate ecosystem forests in northern Mexico.

    No full text
    An important challenge for silvicultural practices is the conservation of tree diversity while fulfilling the traditional objectives of forest management, most notably timber harvesting. The purpose of this study was to compare the tree diversity before and after the application of silvicultural treatments in a temperate forest in northern Mexico. Fifteen experimental plots, each measuring 2500 m2, were established to evaluate the immediate effect of four silvicultural treatments. These treatments were identified by their levels of management: intensive (clearcut, removal 100%), semi-intensive (removal of 59-61% of basal area), conservative (removal of 29-31% of basal area), and a control group. New forest guidelines, in contrast to conventional approaches, were applied to the semi-intensive and conservative treatments based on health and diversity conditions. Basal area, canopy cover, tree and total volume were measured in each plot. The Importance Value Index, alpha diversity, and evenness were estimated before and after treatments. Eighteen species belonging to five genera and five families were found in the study area. The species with the highest ecological values were Pinus durangensis, P. teocote, Quercus sideroxyla, and Quercus convallata with IVI numbers between 13.6 and 24.5%. Alpha diversity was intermediate (Margalef: 2.9 to 3.8), while dominance and evenness were above average compared to other studies (Simpson: 0.69 to 0.77; Shannon-Wiener: 1.44 to 1.6; Pielou: 0.76 to 0.85). The species evenness index in the conservative treatment was high (Sorensen, Jaccard, quantitative Sorensen and Morisita-Horn; 88 to 99%), although abundance decreased. Overall, there were no significant differences in IVI values and diversity indicators before and after treatments, with the exception of the clearcut treatment. When associating the diversity indices with stand variables, only the Pielou's evenness index showed a significant relationship between them. We concluded that both the conservative and semi-intensive treatments did not generate significant changes in tree diversity, but the former had slightly higher alpha diversity indices. These results can provide a better insight on silvicultural practices and their effects on species composition

    Breathless through time: oxygen and animals across Earth’s history

    No full text
    Oxygen levels in the atmosphere and ocean have changed dramatically over Earth history, with major impacts on marine life. Because the early part of Earth’s history lacked both atmospheric oxygen and animals, a persistent co-evolutionary narrative has developed linking oxygen change with changes in animal diversity. Although it was long believed that oxygen rose to essentially modern levels around the Cambrian period, a more muted increase is now believed likely. Thus, if oxygen increase facilitated the Cambrian explosion, it did so by crossing critical ecological thresholds at low O2. Atmospheric oxygen likely remained at low or moderate levels through the early Paleozoic era, and this likely contributed to high metazoan extinction rates until oxygen finally rose to modern levels in the later Paleozoic. After this point, ocean de-oxygenation (and marine mass extinctions) is increasingly linked to large igneous province eruptions—massive volcanic carbon inputs to the Earth system that caused global warming, ocean acidification, and oxygen loss. Although the timescales of these ancient events limit their utility as exact analogs for modern anthropogenic global change, the clear message from the geologic record is that large and rapid CO2 injections into the Earth system consistently cause the same deadly trio of stressors that are observed today. The next frontier in understanding the impact of oxygen changes (or, more broadly, temperature-dependent hypoxia) in deep time requires approaches from ecophysiology that will help conservation biologists better calibrate the response of the biosphere at large taxonomic, spatial, and temporal scales.</p
    corecore