295 research outputs found

    Gliclazide may have an antiapoptotic effect related to its antioxidant properties in human normal and cancer cells

    Get PDF
    Experimental and clinical studies suggest that gliclazide may protect pancreatic β-cells from apoptosis induced by an oxidative stress. However, the precise mechanism(s) of this action are not fully understood and requires further clarification. Therefore, using human normal and cancer cells we examined whether the anti-apoptotic effects of this sulfonylurea is due to its free radical scavenger properties. Hydrogen peroxide (H2O2) as a model trigger of oxidative stress was used to induce cell death. Our experiments were performed on human normal cell line (human umbilical vein endothelial cell line, HUVEC-c) and human cancer cell lines (human mammary gland cell line, Hs578T; human pancreatic duct epithelioid carcinoma cell line, PANC-1). To assess the effect of gliclazide the cells were pre-treated with the drug. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay was employed to measure the impact of gliclazide on cell viability. Generation of reactive oxygen species, mitochondrial membrane potential (∆Ψm), and intracellular Ca2+ concentration [Ca2+] were monitored. Furthermore, the morphological changes associated with apoptosis were determined using double staining with Hoechst 33258-propidium iodide (PI). Gliclazide protects the tested cells from H2O2-induced cell death most likely throughout the inhibition of ROS production. Moreover, the drug restored loss of ΔΨm and diminished intracellular [Ca2+] evoked by H2O2. Double staining with Hoechst 33258-PI revealed that pre-treatment with gliclazide diminished the number of apoptotic cells. Our findings indicate that gliclazide may protect both normal and cancer human cells against apoptosis induced by H2O2. It appears that the anti-apoptotic effect of the drug is most likely associated with reduction of oxidative stress

    Glargine and degludec: solution behaviour of higher dose synthetic insulins

    Get PDF
    Single, double and triple doses of the synthetic insulins glargine and degludec currently used in patient therapy are characterised using macromolecular hydrodynamic techniques (dynamic light scattering and analytical ultracentrifugation) in an attempt to provide the basis for improved personalised insulin profiling in patients with diabetes. Using dynamic light scattering and sedimentation velocity in the analytical ultracentrifuge glargine was shown to be primarily dimeric under solvent conditions used in current formulations whereas degludec behaved as a dihexamer with evidence of further association of the hexamers (“multi-hexamerisation”). Further analysis by sedimentation equilibrium showed that degludec exhibited reversible interaction between mono- and-di-hexamer forms. Unlike glargine, degludec showed strong thermodynamic non-ideality, but this was suppressed by the addition of salt. With such large injectable doses of synthetic insulins remaining in the physiological system for extended periods of time, in some case 24–40 hours, double and triple dose insulins may impact adversely on personalised insulin profiling in patients with diabetes

    A Granulin-Like Growth Factor Secreted by the Carcinogenic Liver Fluke, Opisthorchis viverrini, Promotes Proliferation of Host Cells

    Get PDF
    The human liver fluke, Opisthorchis viverrini, infects millions of people throughout south-east Asia and is a major cause of cholangiocarcinoma, or cancer of the bile ducts. The mechanisms by which chronic infection with O. viverrini results in cholangiocarcinogenesis are multi-factorial, but one such mechanism is the secretion of parasite proteins with mitogenic properties into the bile ducts, driving cell proliferation and creating a tumorigenic environment. Using a proteomic approach, we identified a homologue of human granulin, a potent growth factor involved in cell proliferation and wound healing, in the excretory/secretory (ES) products of the parasite. O. viverrini granulin, termed Ov-GRN-1, was expressed in most parasite tissues, particularly the gut and tegument. Furthermore, Ov-GRN-1 was detected in situ on the surface of biliary epithelial cells of hamsters experimentally infected with O. viverrini. Recombinant Ov-GRN-1 was expressed in E. coli and refolded from inclusion bodies. Refolded protein stimulated proliferation of murine fibroblasts at nanomolar concentrations, and proliferation was inhibited by the MAPK kinase inhibitor, U0126. Antibodies raised to recombinant Ov-GRN-1 inhibited the ability of O. viverrini ES products to induce proliferation of murine fibroblasts and a human cholangiocarcinoma cell line in vitro, indicating that Ov-GRN-1 is the major growth factor present in O. viverrini ES products. This is the first report of a secreted growth factor from a parasitic worm that induces proliferation of host cells, and supports a role for this fluke protein in establishment of a tumorigenic environment that may ultimately manifest as cholangiocarcinoma

    Medical Management of Hyperglycemia in Type 2 Diabetes: A Consensus Algorithm for the Initiation and Adjustment of Therapy: A consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes

    Get PDF
    The consensus algorithm for the medical management of type 2 diabetes was published in August 2006 with the expectation that it would be updated, based on the availability of new interventions and new evidence to establish their clinical role. The authors continue to endorse the principles used to develop the algorithm and its major features. We are sensitive to the risks of changing the algorithm cavalierly or too frequently, without compelling new information. An update to the consensus algorithm published in January 2008 specifically addressed safety issues surrounding the thiazolidinediones. In this revision, we focus on the new classes of medications that now have more clinical data and experience

    Understanding the benefit of metformin use in cancer treatment

    Get PDF
    Biguanides have been developed for the treatment of hyperglycemia and type 2 diabetes. Recently, metformin, the most widely prescribed biguanide, has emerged as a potential anticancer agent. Epidemiological, preclinical and clinical evidence supports the use of metformin as a cancer therapeutic. The ability of metformin to lower circulating insulin may be particularly important for the treatment of cancers known to be associated with hyperinsulinemia, such as those of the breast and colon. Moreover, metformin may exhibit direct inhibitory effects on cancer cells by inhibiting mammalian target of rapamycin (mTOR) signaling and protein synthesis. The evidence supporting a role for metformin in cancer therapy and its potential molecular mechanisms of action are discussed

    Safety and tolerability of sitagliptin in clinical studies: a pooled analysis of data from 10,246 patients with type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a previous pooled analysis of 12 double-blind clinical studies that included data on 6,139 patients with type 2 diabetes, treatment with sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, was shown to be generally well tolerated compared with treatment with control agents. As clinical development of sitagliptin continues, additional studies have been completed, and more patients have been exposed to sitagliptin. The purpose of the present analysis is to update the safety and tolerability assessment of sitagliptin by pooling data from 19 double-blind clinical studies.</p> <p>Methods</p> <p>The present analysis included data from 10,246 patients with type 2 diabetes who received either sitagliptin 100 mg/day (N = 5,429; sitagliptin group) or a comparator agent (placebo or an active comparator) (N = 4,817; non-exposed group). The 19 studies from which this pooled population was drawn represent the double-blind, randomized studies that included patients treated with the usual clinical dose of sitagliptin (100 mg/day) for between 12 weeks and 2 years and for which results were available as of July 2009. These 19 studies assessed sitagliptin taken as monotherapy, initial combination therapy with metformin or pioglitazone, or as add-on combination therapy with other antihyperglycemic agents (metformin, pioglitazone, a sulfonylurea ± metformin, insulin ± metformin, or rosiglitazone + metformin). Patients in the non-exposed group were taking placebo, metformin, pioglitazone, a sulfonylurea ± metformin, insulin ± metformin, or rosiglitazone + metformin. The analysis used patient-level data from each study to evaluate between-group differences in the exposure-adjusted incidence rates of adverse events.</p> <p>Results</p> <p>Summary measures of overall adverse events were similar in the sitagliptin and non-exposed groups, except for an increased incidence of drug-related adverse events in the non-exposed group. Incidence rates of specific adverse events were also generally similar between the two groups, except for increased incidence rates of hypoglycemia, related to the greater use of a sulfonylurea, and diarrhea, related to the greater use of metformin, in the non-exposed group and constipation in the sitagliptin group. Treatment with sitagliptin was not associated with an increased risk of major adverse cardiovascular events.</p> <p>Conclusions</p> <p>In this updated pooled safety analysis of data from 10,246 patients with type 2 diabetes, sitagliptin 100 mg/day was generally well tolerated in clinical trials of up to 2 years in duration.</p
    corecore