21 research outputs found

    Microdissection of human chromosomes by a laser microbeam

    Get PDF
    A laser microbeam apparatus, based on an excimer laser pumped dye laser is used to microdissect human chromosomes and to isolate a single chromosome slice

    Composition and Hierarchical Organisation of a Spider Silk

    Get PDF
    Albeit silks are fairly well understood on a molecular level, their hierarchical organisation and the full complexity of constituents in the spun fibre remain poorly defined. Here we link morphological defined structural elements in dragline silk of Nephila clavipes to their biochemical composition and physicochemical properties. Five layers of different make-ups could be distinguished. Of these only the two core layers contained the known silk proteins, but all can vitally contribute to the mechanical performance or properties of the silk fibre. Understanding the composite nature of silk and its supra-molecular organisation will open avenues in the production of high performance fibres based on artificially spun silk material

    Comet assay measurements of DNA damage in cells by laser microbeams and trapping beams with wavelengths spanning a range of 308 nm to 1064 nm

    No full text
    DNA damage induced in NC37 lymphoblasts by optical tweezers with a continuous-wave Ti:sapphire laser and a continuous-wave Nd:YAG laser (60-240 mW; 10-50 TJ/m2; 30-120 s irradiation) was studied with the comet assay, a single-cell technique used to detect DNA fragmentation in genomes. Over the wavelength range of 750-1064 nm, the amount of damage in DNA peaks at around 760 nm, with the fraction of DNA damage within the range of 750-780 nm being a factor of two larger than the fraction of DNA damage within the range of 800-1064 nm. The variation in DNA damage was not significant over the range of 800-1064 nm. When the logarithm of damage thresholds measured in the present work, as well as values reported previously in the UV range, was plotted as a function of wavelength, a dramatic wavelength dependence became apparent. The damage threshold values can be fitted on two straight lines, one for continuous-wave sources and the other for pulsed sources, irrespective of the type of source used (e.g. classical lamp or laser). The damage threshold around 760 nm falls on the line extrapolated from values for UV-radiation-induced damage, while the data for 800-1064 nm fall on a line that has a different slope. The change in the slope between 320 and 340 nm observed earlier is consistent with a well-known change in DNA-damaging mechanisms. The change observed around 780 nm is therefore suggestive of a further change in the mechanism(s). The data from this work together with our previous measurements provide, to the best of our knowledge, the most comprehensive view available of the DNA damage produced by microfocused light

    Force measurements of optical tweezers in electro-optical cages

    No full text

    Stress promotes Arabidopsis - Piriformospora indica interaction

    No full text
    The endophytic fungus Piriformospora indica colonizes Arabidopsis thaliana roots and promotes plant performance, growth and resistance/tolerance against abiotic and biotic stress. Here we demonstrate that the benefits for the plant increase when the two partners are co-cultivated under stress (limited access to nutrient, exposure to heavy metals and salt, light and osmotic stress, pathogen infection). Moreover, physical contact between P. indica and Arabidopsis roots is necessary for optimal growth promotion, and chemical communication cannot replace the physical contact. Lower nutrient availability down-regulates and higher nutrient availability up-regulates the plant defense system including the expression of pathogenesis-related genes in roots. High light, osmotic and salt stresses support the beneficial interaction between the plant and the fungus. P. indica reduces stomata closure and H2O2 production after Alternaria brassicae infection in leaves and suppresses the defense-related accumulation of the phytohormone jasmonic acid. Thus, shifting the growth conditions toward a stress promotes the mutualistic interaction, while optimal supply with nutrients or low stress diminishes the benefits for the plant in the symbiosis

    Comparison of multiscale imaging methods for brain research

    Get PDF
    A major challenge in neuroscience is how to study structural alterations in the brain. Even small changes in synaptic composition could have severe outcomes for body functions. Many neuropathological diseases are attributable to disorganization of particular synaptic proteins. Yet, to detect and comprehensively describe and evaluate such often rather subtle deviations from the normal physiological status in a detailed and quantitative manner is very challenging. Here, we have compared side-by-side several commercially available light microscopes for their suitability in visualizing synaptic components in larger parts of the brain at low resolution, at extended resolution as well as at super-resolution. Microscopic technologies included stereo, widefield, deconvolution, confocal, and super-resolution set-ups. We also analyzed the impact of adaptive optics, a motorized objective correction collar and CUDA graphics card technology on imaging quality and acquisition speed. Our observations evaluate a basic set of techniques, which allow for multi-color brain imaging from centimeter to nanometer scales. The comparative multi-modal strategy we established can be used as a guide for researchers to select the most appropriate light microscopy method in addressing specific questions in brain research, and we also give insights into recent developments such as optical aberration corrections
    corecore