2 research outputs found

    A Functional Yeast-Based Screen Identifies the Host Microtubule Cytoskeleton as a Target of Numerous <i>Chlamydia pneumoniae</i> Proteins

    No full text
    Bacterial pathogens have evolved intricate ways to manipulate the host to support infection. Here, we systematically assessed the importance of the microtubule cytoskeleton for infection by Chlamydiae, which are obligate intracellular bacteria that are of great importance for human health. The elimination of microtubules in human HEp-2 cells prior to C. pneumoniae infection profoundly attenuated the infection efficiency, demonstrating the need for microtubules for the early infection processes. To identify microtubule-modulating C. pneumoniae proteins, a screen in the model yeast Schizosaccharomyces pombe was performed. Unexpectedly, among 116 selected chlamydial proteins, more than 10%, namely, 13 proteins, massively altered the yeast interphase microtubule cytoskeleton. With two exceptions, these proteins were predicted to be inclusion membrane proteins. As proof of principle, we selected the conserved CPn0443 protein, which caused massive microtubule instability in yeast, for further analysis. CPn0443 bound and bundled microtubules in vitro and co-localized partially with microtubules in vivo in yeast and human cells. Furthermore, CPn0443-transfected U2OS cells had a significantly reduced infection rate by C. pneumoniae EBs. Thus, our yeast screen identified numerous proteins encoded using the highly reduced C. pneumoniae genome that modulated microtubule dynamics. Hijacking of the host microtubule cytoskeleton must be a vital part of chlamydial infection

    Aerosol, Clouds and Trace Gases Research Infrastructure – ACTRIS, the European research infrastructure supporting atmospheric science

    No full text
    International audienceThe Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS) officially became the 33 rd European Research Infrastructure Consortium (ERIC) on April 25, 2023 with the support of 17 founding member and observer countries. As a pan-European legal organization, ACTRIS ERIC will coordinate the provision of data and data products on short-lived atmospheric constituents and clouds relevant to climate and air pollution over the next 15-20 years. ACTRIS was designed more than a decade ago, and its development was funded at national and European levels. It was included in the European Strategy Forum on Research Infrastructures (ESFRI) Roadmap in 2016 and subsequently, in the national infrastructure roadmaps of European countries. It became a landmark of the ESFRI roadmap in 2021. The purpose of this paper is to describe the mission of ACTRIS, its added value to the community of atmospheric scientists, providing services to academia as well as the public and private sectors, and to summarize its main achievements. The present publication serves as a reference document for ACTRIS, its users and the scientific community as a whole. It provides the reader with relevant information and an overview on ACTRIS governance and services, as well as a summary of the main scientific achievements of the last 20 years. The paper concludes with an outlook on the upcoming challenges for ACTRIS and the strategy for its future evolution
    corecore